D LIBRA

EVENT DRIVEN ENTERPRISE

N
e

/ Gestion d

Eventos 6.5.0 ~=—
29/08/2025 ‘Sf

'
4

www.edisa.com

MM EDISA

Gestion de Eventos 6.5.0

Introduccién
Configuracion
Pestana “Colas”
Crear Cola
Suscribirse a una cola
Pestafia “Eventos”
Pestana “Historicos”
Cadigo PL/SQL
Publicar Evento
Publicar Evento Completo (AQ$_JMS_MAP_MESSAGE)
Publicar Evento JSON (AQ$_JMS_TEXT_MESSAGE)
Método 1: Envio de un JSON en un dato CLOB
Método 2: Envio de un JSON a partir de un payload
Publicar Evento RAW
Consumir Evento
Eventos estandar
Comunicaciones HTTP asincronas
Propagar cambios en tablas
Propagar cambios en tablas a nivel de row
Registro evento inmediato
Registro evento diferido
Servicio GAL_EVENTOS _AQ
Recuperar motor AQ caido
Método 1
Método 2
Bibliografia

@M EDISA

MM EDISA

Introduccion

Se ha implementado un sistema de registro de eventos que sigue el patron “Publicador - Consumidores”
mediante Oracle Advanced Queuing, que permite de forma sencilla registrar un evento al que se puedan
registrar multiples suscriptores, a quien seran entregados los eventos de forma asincrona.

En este documento se detalla como se administran las colas de eventos y el codigo PL/SQL que realiza el
registro de evento y su consumo.

MM EDISA

Configuracion

Desde el programa “Cola de Eventos” [U_EVT_AQ] se realiza la gestion de eventos y su monitorizacion.
- Cola de Eventos

4 | Colas Eventos Histdrico

Cola Comentario Tipo Evento Orden Reintentos Retraso [s] Retencion [s]
EVENT_QUELE_CLOB JSOM (CLOB) ENQUEUE_TIME 5 0 oA
EVENT_QUELE_RAW Simple (RAW) ENQUELIE_TIME 5 300 1]

® FORCEMAMNAGER Completo (Propiedades + Pay ENQUELE_TIME 5 300 a

b 4 SHARDED _QUEUED1 Cola sharded para eventos Simple (RAW) ENQUELUE_TIME 5 1] 3600
STD_CMB_REG_TABLA Cola para derivar cambios de tabla por cada fila Completo (Propiedades + Pay ENQUEUE_TIME 3 600 i}

E STD_CMB_TABLA Cola para derivar cambios de tabla Completo (Propiedades + Pay ENQUELE_TIME 3 600 a
STD_DOCUWARE_ASIENTO Cola para notificar contabilizacidn a Docuware Completo (Propiedades + Pay ENQUEUE_TIME 5 300 i}
STD_GAL_COMM_HTTP GALILEO - Comunicaciones Asincronas Completo (Propiedades + Pay ENQUEUE_TIME 3 3600 1}
STD_GESTION_ARCHIVOS Cola para gestionar archivos en almacen externo Completo (Propiedades + Pay ENQUELE_TIME 3 300 a
TEST_CALLBACK Completo (Propiedades + Pay ENQUEUE_TIME 2 30 5

v
Consumidor Tipo Cddigo PL/SQL Transformacidn Asegurar Entrega
IMSS_TEST_SESION GAL_EVENTOS_AQ con Autenticacion A
IMS_TEST GAL_EVENTOS_AQ
JMS_TEST_ENTREGA_S GAL_EVENTOS_AQ v
PLSQL_CALLBACK PL/SQL Callback proc_callback_json_ag
v
Regla
A
v

Pestana “Colas”

En esta pestafa se muestra un maestro-detalle de las colas existentes y sus suscripciones (procedimientos a
los que seran redirigidos los eventos).

Estos multiregistros son bloques de sélo consulta, que tienen deshabilitado el borrado, insercion y edicion, ya
que tienen como origen de datos vistas relacionadas con las colas AQ de Oracle.

Para su gestion haremos uso de los Plug-Ins en la barra vertical desde la que podremos crear, borrar, arrancar,
parar una cola, crear y borrar una suscripcién y exportar dicha configuracién mediante SQLs.

Crear Cola

Tras pulsar en el Plug-In “Crear Cola” se mostrara una ventana modal en la que solicita
e Nombre: Nombre de la cola [obligatorio]
¢ Reintentos: Numero maximo de reintentos previo a enviar el evento a la cola de excepciones
e Retraso Reintentos [s]: Tiempo de espera hasta lanzar un nuevo reintento [en segundos]

MM EDISA

e Tiempo Retencion [s]: Tiempo que permanece en la cola un evento tras su correcto consumo [en
segundos]
Orden Consumo: Como se ordena la entrega de los eventos (Lista de valores)
Tipo Evento: Las colas AQ permiten enviar una amplia variedad de tipos de datos como carga util de
eventos. Para facilitar su uso por parte de los desarrolladores, se ha implementado un subconjunto de
formatos de mensaje:
o Tipo Simple (RAW): Permite enviar un valor de tipo VARCHARZ2 como carga directa. Es un
tipo adecuado para suscriptores Forms o JMS
o Tipo JSON (CLOB): Utiliza el tipo de dato AQ$_JSM_TEXT_MESSAGE para enviar contenido
en formato JSON, almacenado como CLOB. Es un tipo adecuado para suscriptores Forms o
JMS
o Tipo Completo (Propiedades + Payload): Emplea el tipo AQ$_JSM_MAP_MESSAGE, que
permite incluir tanto propiedades como datos de carga. Es el tipo recomendado para
suscriptores PL/SQL Callback.
m Las propiedades pueden utilizarse como filtros en la generacién de suscriptores.
m El payload admite multiples tipos de datos PL/SQL: VARCHAR2, NUMBER, DATE,
BOOLEAN, CLOB y BLOB.
Notificar Errores: Registra una notificacion cuando un evento termina en la cola de excepciones
Iniciar: Iniciar la cola tras su creacién
Estandar: Check que indica si esta cola es o no estandar

Comentario: Texto descripcion sobre el objeto de esta cola

Crear Cola

Cola

Reintentos 3
Retraso Reintentos [s] 300
Tiempo Retencign [s] 0
Orden Consumo

Tipo Evento Completo (Propiedades + Payload) v
+ Notificar Errores

+ Iniciar

Comentario Estandar

4

o
-

Suscribirse a una cola
Tras pulsar en el Plug-In “Suscribirse” se mostrara una ventana modal en la que solicita

e Tipo: Cada evento encolado en AQ puede ser consumido por distintos tipos de suscriptores. Para
facilitar su identificacion, se utiliza un sistema de prefijos en el nombre del suscriptor, dependiendo del

tipo de consumidor

o PL/SQL Callback
m Descripcion: El evento se entrega automaticamente al procedimiento PL/SQL
registrado como callback.

MM EDISA

m Acceso a datos: Se proporcionan métodos especificos para recuperar la informacion
contenida en el evento.
m Prefijo: Sin prefijo
o GAL_EVENTOS_AQ
m Descripcién: Estos eventos son consumidos por el servicio GAL_EVENTOS_AQ.
m Con Autenticacion: Requiere el uso de un TOKEN durante la conexién al WebSocket,
gestionado mediante el paquete PK_GAL_EVENTOS_AQ.
m Prefijos:
e JMS_ para eventos de tipo GAL_EVENTOS_AQ
e JMSS para eventos de tipo GAL_EVENTOS_AQ con Autenticacion
o Oracle Forms

m Descripcion: Eventos destinados a ser consumidos por programas Oracle Forms.

m Prefijo: FRM_
Suscritor: Identificador del suscritor [obligatorio]
Asegurar Entrega: Por defecto, el servicio gal_eventos_aq desencola los eventos de tipo JMS sin
verificar si existe un cliente WebSocket conectado para recibirlos. Esto puede provocar que eventos
se retiren de la cola sin haber sido entregados efectivamente. Para evitar esta situacion, se ha
incorporado una propiedad de aseguramiento de entrega, la cual, al activarse, garantiza que los
eventos solo seran desencolados si existe al menos un WebSocket conectado vy listo para recibir
el contenido. Esta funcionalidad mejora la fiabilidad del sistema en escenarios donde la entrega en
tiempo real es critica.
PL/SQL Callback: procedimiento al que se redirige el evento, cuya firma es:

PROCEDURE callback(CONTEXT RAW, reginfo SYS.AQ$_REG_INFO, descr SYS.AQ$_DESCRIPTOR, payload RAW,
payloadl NUMBER)

Cola Destino: Propagar el evento a otra cola (Deshabilitado)

Transformacion: Método de transformacion tras realizar el desencolado del evento.

Regla: Es posible suscribirse a un evento que cumpla con un filtro relativo a las propiedades
registradas en el objeto JMS entregado. Ejemplo:

| tab.user_data.get_string_property('L$TABLA') = 'DIARIOS'

Suscribirse Cola

Suscribirse Cola L\\)

Tipo PL/SQL Callback v
Suscriptor

Asegurar Entrega
PL/SQL Callback
Cola destino

Transformacidn
Regla e

MM EDISA

Pestana “Eventos”

En esta pestafia se muestran los eventos encolados y el estado del consumo por sus suscriptores. Los eventos
que han sido consumidos correctamente (no han terminado con una EXCEPTION) son retirados tras el tiempo

de “Retencién” especificado en la definicion de la cola.

Aquellos que han fallado en su entrega y han consumido el nUmero maximo de reintentos son enviados a la
cola de excepcion. Para su gestion se ha agregado una serie de Plug-Ins que permite: borrar un evento,
reencolar un evento (que haya caido en la cola de excepcion) y su purgado, asi como consultar las

propiedades y datos entregados en su payload.

a M Cola de Eventos (EMPRESA DESARROLLO ENTORNO)
Colas Eventos | Histdrico

(-] Cola STD_GAL_COMM_HTTP GALILEO - Comunicaciones Asincronas

~— | Consumidor M5G ID Estade Cola Actual Tota Reintentos Fecha Encolado Fecha Desencolado Cola Original
STD_GAL_COMM_HTTP_SUS

i | STD_GAL_COMM_HTTP_SUS B860245730DC431CEDSSCREADY STD_GAL_COMM_HTTR 08/01/202109:14:14

STD_GAL_COMM_HTTP_5US SD4418EC3CADSGADEDSSIEXPIRED [AQS STD GAL COMM_ HI 4[23/01/202011:02:57 | |STD_GAL_COMM_HTTP

STD_GAL_COMM_HTTP_SUS 9D4418EC3CACS6ADEOSSIEXPIRED [AQS STD GAL COMM HI 4[29/01/202011:02:57 | |STD_GAL_COMM_HTTP

A

Registro: 144

MM EDISA

Pestana “Historicos”

En esta pestafia se muestran como multiregistros el histérico de eventos enviados y consumidos por sus
suscriptores.

El motivo de su existencia reside en que tal y como se indica en el apartado anterior, los eventos que han sido

consumidos son retirados de la cola, por lo que fue necesario crear unas tablas auxiliares donde registrarlos.
- Cola de Eventos (EMPRESA DESARROLLO ENTORMNO)

Colas Eventos | Histdrico

Cola STD_GAL_COMM_HTTP GALILEQ - Comunicaciones Asincronas

Fecha Envio MSG ID Empresa Usuario

08/01/2021 09:25:24 BB860245780E1481CE0550250 566 23969 001 EMPRESA DESARRCEDISA SUPERUSUARIO ENTORNO -
08/01/2021 09:22:27 BB860245730E0481CEN550250568 23969 001 EMPRESA DESARRCEDISA SUPERUSUARIO ENTORNO
08/01/2021 09:21:50 BB860245730DF48 1CE055025056823989

08/01/2021 09:21:44 BB860245730DE48 1CE0550250 56623989

08/01/2021 09:15:32 B860245730D043 1CE0550 25056623969

08/01/2021 09:1%:14 BB80245730DC48 1CED55025056623989

07/01/2021 10:44:44 B34D30B8E83E444B9E055025056623989

07/01/2021 10:41:13 B34D30B8B33E344B9E055025056823989

05/01/2021 17:27:19 B82A97F98BF07795E0550250566 23989

05/01/2021 17:23:42 B82A97F98BEF 7795E0550250 566 23969

Fecha Consumo Suscritor M5G ID Reintento Empresa Usuario

08/01/2021 09:25:25 STD_GAL_COMM_HTTP_SUS B360245730E1481CEO550250568235E 0001 EMPRESA DESARRCEDISA SUPERUSUARIO ENTORNO
08/01/2021 09:22:27 STD_GAL_COMM_HTTP_SUS B360245730E0481CEO550250568 239E 0001 EMPRESA DESARRCEDISA SUPERUSUARIO ENTORNO
08/01/2021 09:21:50 STD_GAL_COMM_HTTP_SUS B&60245730DF45 1CE0550250566239E 1]

08/01/2021 09:21:44 STD_GAL_COMM_HTTP_SUS B&60245730DE45 1CE05502505668 239E 0

08/01/2021 09:15:32 STD_GAL_COMM_HTTP_SUS BE002457300048 1CE0550250 566 239E

07/01/2021 10:44:44 STD_GAL_COMM_HTTP_SUS B&4D3D38B5 3E444B9E0550250566 239¢F

07/01/2021 10:41:13 STD_GAL_COMM_HTTP_SUS B34D3D8B33E344B9E0550250568239E

05/01/2021 17:27:19 STD_GAL_COMM_HTTP_SUS B&2A97F98BF07796E0550250568 239E

05/01/2021 17:23:42 STD_GAL_COMM_HTTP_SUS B&2A97F98BEF7796E0550250566 235E

Mensaje Error

4

Registro: 1/10

MM EDISA

Codigo PL/SQL

En esta seccion se indica el codigo a utilizar para comunicarnos con las colas registradas.

Para facilitar la gestion y centralizar un modo Unico de trabajo nos apoyaremos en el paquete
“PK_GESTION_EVENTOS_AQ” el cual nos abstrae del codigo especifico de gestion de colas mediante los
paquetes “DBMS_AQ” y “DBMS_ADMAQ”

Publicar Evento

Segun el tipo de cola, se utilizara un método de encole especifico.

Publicar Evento Completo (AQS_JMS_MAP_MESSAGE)

El envio de un evento a una cola se realiza mediante este método

FUNCTION encola_evento(p_cola VARCHAR2, p_propiedades IN OUT NOCOPY pk_gestion_eventos_aq_st.tt_propiedades, p_payload IN OUT
NOCOPY pk_gestion_eventos_aq_st.tt_payload, p_immediate_enqueue BOOLEAN DEFAULT FALSE, p_wk_asegurar_orden BOOLEAN
DEFAULT FALSE) RETURN RAW;

Dénde
e p_cola: Identificador de la cola a la que se envia el evento.

e p_propiedades: Array de propiedades. Permite filirado por regla de suscripcion.
Para su registro, utilizar el PROCEDURE segun corresponda.

PROCEDURE add_propiedad(t_propiedades IN OUT NOCOPY pk_gestion_eventos_agq.tt_propiedades, p_propiedad VARCHAR?2,
p_valor VARCHAR2);

PROCEDURE add_propiedad(t_propiedades IN OUT NOCOPY pk_gestion_eventos_aq.tt_propiedades, p_propiedad VARCHAR2,
p_valor NUMBER);

PROCEDURE add_propiedad(t_propiedades IN OUT NOCOPY pk_gestion_eventos_agq.tt_propiedades, p_propiedad VARCHAR?2,
p_valor DATE);

PROCEDURE add_propiedad(t_propiedades IN OUT NOCOPY pk_gestion_eventos_aq.tt_propiedades, p_propiedad VARCHAR2,
p_valor BOOLEAN);

e p_payload: Array que contiene los datos a entregar en el evento (NO permite filtrado).
Para su registro, utilizar el PROCEDURE segun corresponda.

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHARZ2, p_valor
VARCHAR?);

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHAR2, p_valor
NUMBER);

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHARZ2, p_valor DATE);

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHAR2, p_valor
BOOLEAN);

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_ag.tt_payload, p_propiedad VARCHARZ2, p_valor CLOB);

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHARZ2, p_valor BLOB);

MM EDISA

e p_immediate_enqueue: Indica si los eventos se encolan de forma inmediata o requieren de un
COMMIT posterior para su visibilidad

e p_wk_asegurar_orden: Se aplica un WORKAROUND que corrige un BUG por el cual los PL/SQL
Callback no son entregado en ORDEN cuando se registran en el mismo segundo. Si se activa, el
proceso agrega un SLEEP de 1s y a mayores un COMMIT si "p_immediate_enqueue" esta
desactivado.

Publicar Evento JSON (AQS_JMS_TEXT_MESSAGE)

Método 1: Envio de un JSON en un dato CLOB

FUNCTION encola_evento_json(p_cola VARCHAR?Z2, p_json_payload CLOB, p_registrar_variables_globales BOOLEAN DEFAULT FALSE,
p_immediate_enqueue BOOLEAN DEFAULT FALSE, p_wk_asegurar_orden BOOLEAN DEFAULT FALSE) RETURN RAW;

Dénde

e p_cola: Identificador de la cola a la que se envia el evento.

e p_json_payload: Texto a enviar en el evento. Lo adecuado es que sea un JSON aunque nada
impide enviar por ejemplo un p_payload: Array que contiene los datos a entregar en el evento (NO
permite filtrado).

e p_registrar_variables_globales: Permite trasladar las variables globales de sesién en el CLOB de
envio. Para ello generara un nuevo JSON con el formato
“{“sesion_vars”{...},"payload”:<p_json_payload>}"

El método de consumo_evento_json se encarga de detectar este modo y aplicar las variables
globales en la sesion donde se desencola.

e p_immediate_enqueue: Indica si los eventos se encolan de forma inmediata o requieren de un
COMMIT posterior para su visibilidad

e p_wk_asegurar_orden: Se aplica un WORKAROUND que corrige un BUG por el cual los PL/SQL
Callback no son entregado en ORDEN cuando se registran en el mismo segundo. Si se activa, el
proceso agrega un SLEEP de 1s y a mayores un COMMIT si "p_immediate_enqueue" esta
desactivado.

Método 2: Envio de un JSON a partir de un payload

FUNCTION encola_evento_json(p_cola VARCHAR?2, p_payload IN OUT NOCOPY pk_gestion_eventos_aq_st.tt_payload,
p_registrar_variables_globales BOOLEAN DEFAULT FALSE, p_immediate_enqueue BOOLEAN DEFAULT FALSE, p_wk_asegurar_orden
BOOLEAN DEFAULT FALSE) RETURN RAW;

Dénde
e p_cola: Identificador de la cola a la que se envia el evento.

e p_payload: Array que contiene los datos a entregar en el evento. Para su registro, utilizar el
PROCEDURE segun corresponda.

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHARZ2, p_valor
VARCHAR?2);

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHAR2, p_valor
NUMBER);

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHARZ2, p_valor DATE);

MM EDISA

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHAR?2, p_valor
BOOLEAN);

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHARZ2, p_valor CLOB);

PROCEDURE add_payload(t_payload IN OUT NOCOPY pk_gestion_eventos_aq.tt_payload, p_propiedad VARCHAR2, p_valor BLOB);

e p_registrar_variables_globales: Permite trasladar las variables globales de sesién en el CLOB de
envio. Para ello generara un nuevo JSON con el formato
“{“sesion_vars”{...},”json_data”:<p_json_payload>}"

El método de consumo_evento_json se encarga de detectar este modo y aplicar las variables
globales en la sesion donde se desencola.

e p_immediate_enqueue: Indica si los eventos se encolan de forma inmediata o requieren de un
COMMIT posterior para su visibilidad

e p_wk_asegurar_orden: Se aplica un WORKAROUND que corrige un BUG por el cual los PL/SQL
Callback no son entregado en ORDEN cuando se registran en el mismo segundo. Si se activa, el
proceso agrega un SLEEP de 1s y a mayores un COMMIT si "p_immediate_enqueue" esta
desactivado.

Publicar Evento RAW

El envio de un evento a una cola se realiza mediante este método

FUNCTION encola_evento_raw(p_cola VARCHARZ2, p_dato VARCHAR?2, p_registrar_variables_globales BOOLEAN DEFAULT FALSE,
p_immediate_enqueue BOOLEAN DEFAULT FALSE, p_wk_asegurar_orden BOOLEAN DEFAULT FALSE) RETURN RAW;

Dénde

e p_cola: Identificador de la cola a la que se envia el evento.

e p_dato: Texto a enviar en el evento.

e p_registrar_variables_globales: Permite trasladar las variables globales de sesién en el CLOB de
envio. Para ello generara un nuevo JSON con el formato
“{"sesion_vars”{...},”json_data”:<p_json_payload>}"

El método de consumo_evento_json se encarga de detectar este modo y aplicar las variables
globales en la sesion donde se desencola.

e p_immediate_enqueue: Indica si los eventos se encolan de forma inmediata o requieren de un
COMMIT posterior para su visibilidad

e p_wk_asegurar_orden: Se aplica un WORKAROUND que corrige un BUG por el cual los PL/SQL
Callback no son entregado en ORDEN cuando se registran en el mismo segundo. Si se activa, el
proceso agrega un SLEEP de 1s y a mayores un COMMIT si "p_immediate_enqueue" esta
desactivado.

MM EDISA

Consumir Evento

Las colas de eventos “Oracle Advanced Queueing” permiten redirigir un evento a un PROCEDURE que
cumpla la siguiente firma

PROCEDURE callback(CONTEXT RAW, reginfo SYS.AQ$_REG_INFO, descr SYS.AQ$_DESCRIPTOR,
payload RAW, payloadl NUMBER)

Dentro de este PROCEDURE el desarrollador tiene que lanzar el cédigo que realiza el “desencolado” del
evento y extraccion de las propiedades registradas en su envio.

Para facilitar el desarrollo y evitar posibles errores, el paquete “PK_GESTION_EVENTOS_AQ’ incluye los
métodos “callback_plantilla’, “callback_plantilla_json” y “callback_plantilla_raw’; que sirvan de punto de
para a continuacion continuar con el proceso del dato entregado en el registro del evento, segun el tipo de

cola configurada (Completo, JSON y RAW respectivamente).

PROCEDURE callback(CONTEXT RAW, reginfo SYS.AQ$_REG_INFO, descr SYS.AQ$_DESCRIPTOR, payload RAW, payloadl NUMBER) IS
PRAGMA AUTONOMOUS_TRANSACTION;
v_valor_evento CLOB;
vt_propiedades pk_gestion_eventos_aq.tt_propiedades;
vt_payload pk_gestion_eventos_aq.tt_payload;
BEGIN
--Consumir el evento -> Extrae el PAYLOAD del evento, registra las variables globales y retorna las propiedades
pk_gestion_eventos_aq.consumir_evento(CONTEXT => CONTEXT, reginfo => reginfo, descr => descr, payload => payload, payloadl =>
payload|, p_propiedades => vt_propiedades, p_payload => vt_payload);

--Continuar a partir de aqui

--Finalizar con COMMIT!!!
COMMIT;
EXCEPTION
WHEN OTHERS THEN
--Registrar consumo del evento tabla de histérico
pk_gestion_eventos_agq.registrar_consumo_evento(p_empresa => pkpantallas.get_empresa, p_usuario => pkpantallas.usuario_validado,
p_cola => descr.queue_name, p_suscritor => descr.consumer_name, p_msg_id => descr.msg_id, p_reintento => descr.msg_prop.attempts,
p_mensaje_error => SQLERRM);
ROLLBACK;
RAISE;
END callback;

MM EDISA

Eventos estandar

Con el entorno se distribuyen colas estandar las cuales gestionan los siguientes eventos.

Comunicaciones HTTP asincronas

El paquete pk_galileo permite registrar una peticion HTTP (mediante pk_galileo.tr_peticion) de forma
asincrona, a través de la cola estandar “STD_GAL_COMM_HTTP”.

Esta cola tiene la particularidad de que la funcién PL/SQL CALLBACK esta suscrita al propio paquete, el cual
se encarga del desencolado y comunicacién HTTP, permitiendo redirigir la respuesta a otra funcion PL/SQL.

Las funciones que se encargan para el registro de estos eventos son las siguientes.

FUNCTION aq_encola_peticion_http(p_peticion tr_peticion, p_plsql_callback VARCHAR2 DEFAULT NULL) RETURN RAW;

FUNCTION aq_encola_peticion_http_at(p_peticion tr_peticion, p_plsql_callback VARCHAR2 DEFAULT NULL) RETURN RAW;

PROCEDURE aq_encola_peticion_http(p_peticion tr_peticion, p_plsql_callback VARCHAR2 DEFAULT NULL);

PROCEDURE aq_encola_peticion_http_at(p_peticion tr_peticion, p_plsql_callback VARCHAR2 DEFAULT NULL);

Propagar cambios en tablas

La cola “STD_CMB_TABLA” gestiona los eventos de cambios de una tabla.
Este evento usualmente se registra desde un TRIGGER el cual esta a nivel de cambios de tabla.

Para facilitar su creacion se debe utilizar este método
pk_gestion_eventos_aq.snippet_trigger_cambios_tabla(p_nombre_tabla VARCHARZ2, p_nombre_corto VARCHAR2 DEFAULT
NULL) RETURN CLOB;

Propagar cambios en tablas a nivel de row

La cola “STD_CMB_REG_TABLA” gestiona los eventos de cambios de una tabla a nivel de registro.
Para este tipo de eventos tenemos dos formas de gestionarlos.

Registro evento inmediato
Si la tabla no suele tener mucho volumen de cambios, el evento se puede registrar desde el TRIGGER del

tipo de cambio de fila.

Para facilitar su creaciéon se debe utilizar este método

pk_gestion_eventos_aq.snippet_trigger_cambios_reg(p_nombre_tabla VARCHAR2, p_nombre_corto VARCHAR2 DEFAULT
NULL, p_solo_pk VARCHAR2 DEFAULT 'N', p_usar_payload VARCHAR2 DEFAULT 'N') RETURN CLOB;

MM EDISA

Registro evento diferido
Si la tabla suele tener muchos cambios simultaneos que involucran la modificacién de varias filas simultaneas
y debido a que el registro de cada evento es una tarea pesada, se recomienda utilizar el método registro en
diferido, el cual consta de la creacion de dos TRIGGERSs.

- TRIGGER a nivel de fila: Registra los datos del evento como un evento en diferido

- TRIGGER a nivel de tabla: Itera por los eventos registrados en diferido y los inserta en la cola.

Para facilitar su creacion se debe utilizar este método

pk_gestion_eventos_aq.snippet_triggers_cmb_reg_dif(p_nombre_tabla VARCHARZ2, p_nombre_corto VARCHAR2 DEFAULT
NULL, p_solo_pk VARCHAR2 DEFAULT 'N', p_usar_payload VARCHAR2 DEFAULT 'N') RETURN CLOB;

POSIBLES MEJORAS

Integrar la gestidon de eventos a nivel de trigger con AUDITORIA, de forma que se puedan registrar el trigger
a nivel de columnas a controlar y el poder indicar qué columnas van como property(permiten filtrar) y cuales
como payload

MM EDISA

Servicio GAL_EVENTOS_AQ

El servicio GAL_EVENTOS_AQ permite entregar eventos desde una cola AQ de Oracle a una aplicacion web
mediante WebSocket, como por ejemplo un moédulo de LIBRA Movilidad.

Para utilizarlo, basta con instalar el servicio y afadir un suscriptor del tipo GAL_EVENTOS_AQ a la cola
correspondiente. Este suscriptor puede configurarse para requerir credenciales de conexién, lo que garantiza
que los eventos criticos no se entreguen a aplicaciones no autorizadas que simplemente capturen la URL del
WebSocket.

Para facilitar el acceso ala URL del WebSocket, se ha desarrollado el paquete PK_GAL_EVENTOS_AQ, que
incluye el método get_url_websocket. Este método genera automaticamente una URL que incorpora un token
de un solo uso para autenticacién, y selecciona el protocolo adecuado (ws 0 wss) segun si el servicio esta
instalado con SSL o si la URL publica utiliza https.

FUNCTION get_url_websocket(p_empresa VARCHARZ2, p_usuario VARCHARZ2, p_cola VARCHAR?2,
p_consumidor VARCHAR2) RETURN VARCHAR?2

MM EDISA

Recuperar motor AQ caido

En ocasiones hemos tenido caidas del motor de eventos AQ el cual en sélo conseguimos recuperar tras un
reinicio de la BBDD.

Nota
Hay que tener en cuenta que las colas AQ internamente utilizan JOBS de BBDD en el usuario SYS, por lo
que cualquier configuracion de la BBDD que tenga los JOBS parados (por ejemplo job_queue_procesess
= 0) evitara que se propaguen los eventos.

Tras abrir un caso en soporte, nos han facilitado las siguientes instrucciones

La diferencia entre el método 1 y 2 es que en el primero se trata de realizar parada controlada de los
schedulers mientras que el segundo implica matar sesiones.

Método 1

1. Cambiar el parametro “aq_tm_processes” a 0
conn / as sysdba
alter system set aq_tm_processes = 0;

2. Detener los SCHEDULER _JOB relacionados con AQ

DECLARE
CURSOR cur_aq IS
SELECT job_name
FROM dba_scheduler_running_jobs
WHERE job_name LIKE 'AQ$_%"
BEGIN
FOR reg IN cur_aq LOOP
dbms_scheduler.stop_job(reg.job_name);
END LOOP;
END;

3. Volver a dejar el parametro “aq_tm_processes” a 1

Método 2

1. Cambiar el parametro “aq_tm_processes” a 0
conn / as sysdba
alter system set aq_tm_processes = 0;

2. Matar todos los procesos AQ (q01,q02,...) en el SO o esperar a que finalicen.

3. Volver a dejar el parametro “aq_tm_processes” a 1

MM EDISA

Método 3

Ejecutar script que vuelca los datos de la BBDD a un HTML
https://support.oracle.com/epmos/faces/DocumentDisplay?parent=SrDetail Text&sourceld=3-
30462384631&id=1193854.1

https://support.oracle.com/epmos/faces/DocumentDisplay? afrLoop=35064435889613&parent=SrDetailText
&sourceld=3-30462384631&id=1958196.1& afrWindowMode=0& adf.ctrl-state=186a36y16z 70

En caso de que alguno de estos parametros tenga estos valores continuar

Parametro Valor no valido
client_enable auto unregister FALSE
streams pool size 0

Pasos a realizar

» connect/ as sysdba

» alter system set "_client_enable_auto_unregister"=true scope=spfile ;
» shutdown immediate

» startup

Asignar un valor al parametro STEAMS_POOL_SIZE, por ejemplo: 50M
El valor adecuado resultaria en el valor obtenido por esta SQL

SELECT component, current_size/1048576, max_size/1048576
FROM v$sga_dynamic_components
WHERE component='streams pool';

https://support.oracle.com/epmos/faces/DocumentDisplay?parent=SrDetailText&sourceId=3-30462384631&id=1193854.1
https://support.oracle.com/epmos/faces/DocumentDisplay?parent=SrDetailText&sourceId=3-30462384631&id=1193854.1
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=35064435889613&parent=SrDetailText&sourceId=3-30462384631&id=1958196.1&_afrWindowMode=0&_adf.ctrl-state=186a36y16z_70
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=35064435889613&parent=SrDetailText&sourceId=3-30462384631&id=1958196.1&_afrWindowMode=0&_adf.ctrl-state=186a36y16z_70

N EDISA

Bibliografia
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/arpls/DBMS AQ.html
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/arpls/DBMS AQADM.html

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/arpls/DBMS_AQ.html
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/arpls/DBMS_AQADM.html

LATINOAMERICA
COLOMBIA
ECUADOR

MEXICO

REP. DOMINICANA

ESPANA

MADRID

BARCELONA

VALENCIA

VIGO

OVIEDO

LAS PALMAS

OURENSE (CENTRO I+D)

