

1

conorerP_

DESARROLLO

LIBRA 6.5.0

Fecha: 12/01/2026

2

Introducción __ 6

Grupo de Objetos __ 6

Nombre de los bloques __ 7

Lienzo base ___ 7

Listados __ 7

Mensajes ___ 7
Información detallada ___ 8
Crear Mensajes___ 9

Atributos Visuales ___ 10

Clases de propiedad ___ 11

Campos de tipo elemento de lista __ 12

Ejecución de programas por código ___ 12

Campos de visualización de descripciones ______________________________________ 13

Listas de Valores __ 16
Limitaciones __ 16
Pasos para crear una lista de valores __ 16
Asociar programa a una Lista de Valores ___ 19
Segunda Cláusula Where para una lista de valores. _____________________________________ 20
Cláusulas Where dinámicas. ___ 22
Código PL/SQL de Pre-Validación ___ 22
Código PL/SQL de Validación ___ 23
Colorear determinados registros en Listas de Valores ___________________________________ 23
Filtros en listas de valores ___ 24
Plug-ins en listas de valores __ 26
Mejoras de búsquedas contextuales ___ 27
Envío del contenido de una lista de valores a Hoja de Cálculo. ____________________________ 28
Posicionado de una lista de valores en Pantalla __ 28
Consulta para obtener la descripción __ 28
Listas de valores con valores estáticos ___ 28
Listas de Valores por grupos. ___ 29
Listas de valores en modo Entrada Consulta __ 29
Funciones para gestión de la Lista de Valores ___ 31
Indicar el botón de llamada a la lista de valores __ 31
Disparadores ___ 31

WHEN_NEW_ITEM_INSTANCE ___ 32
WHEN-VALIDATE-ITEM ___ 32

Listas de valores de Multiselección __ 33
Procedimiento para activar una lista de multiselección. _______________________________ 34
Funciones para procesar los registros seleccionados por el usuario. _____________________ 34
Ejemplo de lista de valores de multiselección. ______________________________________ 35

Programa para mantener programas !!!!!! _____________________________________ 36
Operaciones que se pueden realizar a nivel de programa ________________________________ 36
Operaciones que se pueden realizar a nivel de bloque __________________________________ 39
Operaciones que se pueden realizar a nivel de campo __________________________________ 43

Control de visualización de campo según el sector del grupo empresarial ________________ 50

3

Pestañas ___ 51
Informes ___ 52

Configuración de los informes ___ 53
Generación / Impresión Múltiples __ 54
Control de visualización de informe según sector del grupo empresarial _________________ 56

Ventanas ___ 57
Plug-in ___ 58

Devolver valor desde el plug-in al programa llamador ________________________________ 63
Permisos __ 63
Autorizar / Desautorizar plug-in __ 63
Plug-ins globales a un programa __ 63
Crear plug-ins globales a todos los programas de Libra. _______________________________ 63
Control de visualización del plug-in según sector del grupo empresarial __________________ 64

Duplicado automático de tablas detalle al duplicar registro de bloque _____________________ 64
Documentación de modificaciones en programas ______________________________________ 65

Personalizar programas __ 65

Modificar por código las propiedades cargadas del mantenimiento de programas. _____ 66
DISPSTD.SET_PROPIEDAD ___ 66
DISPSTD.GET_PROPIEDAD ___ 66

Código PL/SQL __ 72
Generación de hojas de cálculo desde códigos PL/SQL __________________________________ 78
Ejecutar operaciones de Forms desde PL/SQL de Libra. __________________________________ 78

Ejemplo de activación/desactivación de plug-in desde PL/SQL _________________________ 80
Generar archivos de texto en ordenador cliente o servidor de aplicaciones desde PL/SQL ___ 81
Generar archivos XML en ordenador cliente o servidor de aplicaciones desde código pl/sql. _ 81

Leer propiedades de objetos del programa desde código PL/SQL. _________________________ 82
Gestionar los registros seleccionados por el usuario. ___________________________________ 82

Búsqueda contextual __ 83
Habilitar y Deshabilitar opciones de menú (Paquete FMENU) __________________________ 84

Notas Importantes sobre el Menú y la Botonera _________________________________ 85

Generar Logs de traza. ___ 86
Logs de incidencias ocurridas en la base de datos ______________________________________ 87

Disparadores estándar ___ 88
Particularidades ___ 88
Personalización Borrado y grabación. __ 88

Impresión. ___ 89
Impresión por FAX. ___ 89
Impresión multidestino. ___ 89

Crear un formulario desde cero __ 90
Colocar campos en la pantalla. ___ 92
Disparadores personalizados __ 92

Modificación de propiedades de campos (FITEM) ______________________________________ 92
Campos de primary key de un bloque. ___ 93
Campos Desde / Hasta __ 93

Máscaras __ 93

Funciones Varias __ 94

4

Control de Errores ___ 95

Nomenclatura de SQLS ___ 99

Notificación de errores en procesos desatendidos ______________________________ 101
Configuración de Notificaciones ___ 101

Lista de Operaciones a realizar para realizar la notificación ___________________________ 102

Generación de hojas de cálculo ___ 103
Pasos para la generación de una hoja de cálculo ______________________________________ 103
Propiedades ___ 104

Archivo de hoja de cálculo ___ 104
Fuentes y Estilos ___ 106
Hoja. ___ 107
Columna de hoja ___ 108
SQL __ 108
Grupos de títulos de columnas __ 109
Columna de la SQL ___ 109
A nivel de fórmula. ___ 111
A nivel de columna de fórmula. ___ 111
Variables disponibles en fórmulas. ___ 112
Fórmulas matriciales. ___ 112

Asignar valores sin ser obtenidos de una SQL a determinadas celdas. _____________________ 113
Combinar celdas ___ 115

Constantes __ 116
Colores ___ 116
Negrita ___ 117
Subrayado __ 117
Borde __ 117
Alineación Horizontal ___ 117
Alineación Vertical ___ 117

Preparar en base de datos y ejecutar en Forms _______________________________________ 118
Hoja de Cálculo Simple ___ 118

Lectura de hojas de cálculo ___ 119

Modificación de hojas de cálculo __ 120
Archivo a modificar en el servidor de Forms o en el equipo del usuario ____________________ 120
Archivo de plantilla almacenado en la base de datos ___________________________________ 121

Gestión de correos electrónicos ___ 121
Envío ___ 121

Inicializar ___ 122
Opcionalmente cambiar el remitente del mensaje __________________________________ 122
Incorporar el asunto del mensaje __ 122
Incorporar el cuerpo del mensaje __ 122
Indicar los destinatarios ___ 122
Adjuntar archivos __ 123
Procesar envío. __ 123
Funciones de control __ 124

Descarga __ 124

Gestión de archivos XML. __ 125
Carga de archivo __ 125

Inicialización __ 125
Configuración de Nodo __ 125

5

Configuración de Items del nodo __ 126
Ejecutar el proceso de lectura __ 127

Generación de archivos XML __ 127
Inicialización __ 127
Incluir nodos al documento __ 128
Incluir campos a un nodo __ 128
Incluir atributos a un nodo. __ 128
Ejecutar el proceso de generación ___ 128

Recursos HTML en programas de Forms. ______________________________________ 130
Programa Archivos de Recursos [U_RESOURCES]______________________________________ 130
PKLIBRSC.PLL __ 130
PKLIBWEBBROWSER.PLL ___ 131
Manual de uso en programa __ 132

Editor Visual HTML ___ 134
Inicializar ___ 134
Propiedades. __ 134
Incluir etiquetas fijas __ 135
Incluir imágenes ___ 135
Ejecutar y recuperar los datos introducidos por el usuario. ___________________________ 135

Gestión de Archivos __ 136
Borrar un archivo en la base de datos ___ 136
Obtener el listado de archivos de un directorio de la BD. _______________________________ 137
Comprimir un archivo en la base de datos ___ 137
Comprimir varios archivos en un único ZIP en base de datos ____________________________ 137
Descomprimir un archivo en la base de datos __ 138
Impresión de archivos PDF ___ 138
Cambiar codificación de archivos de texto ___ 139
Consultar la codificación de un archivo de texto ______________________________________ 139
Obtener lista de archivos de un directorio ___ 139

En base de datos ___ 139
En equipo del usuario o en el servidor de aplicaciones _______________________________ 140

Gestión de fecha de última modificación de un archivo ________________________________ 140
Obtener fecha de un archivo en base de datos _____________________________________ 140
Obtener fecha de un archivo en servidor de aplicaciones o en el equipo del usuario _______ 140
Cambiar la fecha de última modificación de un archivo en servidor de aplicaciones o equipo del
usuario. __ 141

Parser de textos para reemplazar etiquetas ___________________________________ 141
Tipos de etiquetas __ 142
Inicializar ___ 143
Propiedades generales del proceso __ 143
Variables ___ 144
Propiedades de tabla ___ 144
Propiedades de columna __ 144
Obtener el resultado __ 144

Variables y parámetros globales __ 145
Variables globales __ 145
Parámetros disponibles para personalizaciones _______________________________________ 146
Variables globales accesibles mediante pkpantallas ___________________________________ 146
Definibles dinámicamente __ 146
Variables de inicio de libra.env __ 147

6

Desarrollo de aplicaciones para pocket - Terminal Server ________________________ 148
Configuración del entorno. ___ 148
Desarrollo o adaptación de un programa a pantalla pequeña. _________________________ 149

Localización de descripciones de tablas de parametrización ______________________ 150

Consulta de datos jerárquicos __ 152

Gráficos integrados en Programas ___ 153
Inicializar Gráfico. __ 153
Propiedades a nivel Gráfico. __ 153
Añadir SQL a Gráficos ___ 154
Propiedades de SQL. __ 154
Mostrar el gráfico __ 154

Introducción

Los programas de Libra están orientados hacia el uso de pestañas, incluso en programas muy sencillos se

usa por lo menos una pestaña con el nombre del programa.

Grupo de Objetos

La principal ventaja de los grupos de objetos radica en que permite manipular con más facilidad varios

componentes de un formulario como si se trataran de uno sólo. También permite de forma fácil reutilizar

componentes en varios formularios, pero la principal ventaja es que si se añade un componente al grupo de

objetos todos los formularios que hayan derivado una subclase (no copiado) de ese grupo de objetos,

incluirán automáticamente dicho objeto componente cuando se vuelvan a compilar o a abrir en Forms.

Todos los componentes prefijados para ser usados en libra se almacenan en una librería de objetos llamada

OBJETOSPANT.OLB.

Los componentes que incorpora la librería de objetos son:

• FORMULARIO_BASE: Incorpora todos los elementos básicos para desarrollar un programa.

• FORMULARIO_BASICO: Igual que FORMULARIO_BASE, pero sin ningún lienzo y ventana.

Recomendado en programas que funcionen como plug-in.

• EDICIÓN_PANTALLA: Incorpora los elementos necesarios para permitir hacer dinámico el

formulario.

• LISTA_VALORES: Elementos para mostrar listas de valores.

• LISTA_VALORES_GRUPO: Elementos para listas de valores por grupos.

• LISTADO: Incorpora lo necesario para realizar la llamada a un informe.

• GRAFICO. Incorpora lo necesario para realizar la llamada a un gráfico.

• CALENDARIO: Elementos para construir el calendario.

• CALCULADORA: Elementos para construir la calculadora. Es importante que todos los

programas contengan este grupo de objeto.

• INSERTAR_IMAGEN: Obsoleto – NO USAR.

• FORMULARIO_LIGHT: Obsoleto – NO USAR.

7

Para incorporarlos en el programa que se está desarrollando simplemente abrimos la librería de objetos y

arrastramos el componente a nuestro formulario y seleccionamos que deseamos incorporarlo como una

Subclase, esto es muy importante para que futuros cambios de funcionalidad o estética no requieran

modificar el programa y que se incorporen simplemente recompilando el programa.

Nombre de los bloques

Al arrancar el programa irá siempre al primer bloque navegable, por tanto, se puede usar cualquier nombre

para los bloques, por ejemplo, los nombres de las tablas o abreviaturas.

Lienzo base

El lienzo base se llama CANVAS_TAB y tiene una pestaña llamada TAB0. Para añadir una nueva pestaña

es tan simple como situarse sobre TAB0 y pulsar añadir.

Listados

Para poder usar listados desde un programa deberemos de cargar el componente LISTADOS de la librería

de objetos “objetospant.olb”

Nota: No hace falta habilitar el botón de imprimir, ya que al inicializarse el programa se detecta si tiene un

bloque BREPORT y en ese caso lo activa automáticamente.

Es recomendable, en la medida que sea posible, indicar el informe a ejecutar en el mantenimiento de

programas en la pestaña “Informes”, en vez de ponerlo de forma fija en el fuente del programa.

Mensajes

Todos los mensajes tienen que ser traducibles, para ello, para mostrar un mensaje al usuario siempre

usaremos el paquete MSG de PKLIBPNT.PLL que contiene las siguientes funciones y procedimientos:

• MENSAJE: Muestra el mensaje y para la ejecución del código.

• ALERTA: Muestra el mensaje, pero no para la ejecución del código. Esta función devuelve el

código del botón que pulsó el usuario.

• MENSAJE_PERSONAL. Igual que MENSAJE, pero le podemos añadir un texto personalizado.

Trataremos de evitar su uso, ya que el texto personalizado no se puede traducir.

• ALERTA_PERSONAL: Igual que ALERTA, pero le podemos añadir un texto personalizado. Al

igual que MENSAJE_PERSONAL, trataremos de evitar su uso, ya que el texto personalizado no

se puede traducir.

• REPLACE_TEXTO: Se pasan como parámetros dos cadenas. El cometido de esta función es

hacer que en el próximo mensaje o alerta que salte, sustituir la cadena1 por la cadena2, de esta

forma si creamos el mensaje “Se han generado <> facturas” y hacemos la llamada

MSG.REPLACE_TEXTO('<>', 10), al llamar a MSG.ALERTA el mensaje que se muestra al

usuario es: “Se han generado 10 facturas”.

8

Cuando usamos la función ALERTA o ALERTA_PERSONAL para comprobar cual de los botones ha

pulsado el usuario se comparará con las siguientes constantes, ALERT_BUTTON1, ALERT_BUTTON2,

ALERT_BUTTON3 para controlar si el usuario ha pulsado el botón 1, 2 ó 3 respectivamente.

IMPORTANTE: Las llamadas a

MSG.ALERTA y MSG.ALERTA_PERSONAL

ejecutan un RAISE Form_Trigger_Failure; por

lo que si son llamados en un bloque PL/SQL que

captura una excepción WHEN OTHERS hará

que salte al código que maneja esa excepción.

Ejemplo:
DECLARE

 v_boton_pulsado NUMBER;

BEGIN

 v_boton_pulsado = MSG.ALERTA('ALERT', 'SALIR');

 IF v_boton_pulsado = ALERT_BUTTON1 THEN

 -- Ha pulsado el botón 1

 ELSIF v_boton_pulsado = ALERT_BUTTON2 THEN

 -- Ha pulsado el botón 2

 ELSIF v_boton_pulsado = ALERT_BUTTON3 THEN

 -- Ha pulsado el botón 3

 END IF;

END;

Información detallada

Cuando se muestra un mensaje con 1 botón, puede recoger información detallada que se hubiese puesto en

cola desde procedimientos almacenados en base de datos o en programas de Forms, de forma que, en el

caso de haber información detallada en la cola, se añade un nuevo botón “Detalle” para que el usuario pueda

visualizarla.

Se puede poner en la cola de ampliación códigos de mensaje definidos en la tabla MENSAJES, esta es la

opción recomendada, ya que al estar codificado en MENSAJES se traduce al idioma del usuario:

PKPANTALLAS.TRAZA(<tipo mensaje>, <codigo_mensaje>, <texto adicional del mensaje', 'MSG');

Si el mensaje tiene parte variables, se pueden reemplazar ejecutando

PKPANTALLAS.SET_MSG_REPLACE_TEXTO(cadena a reemplazar, valor a reemplazar) antes de llamar a

PKPANTALLAS.TRAZA.

También se puede poner un texto fijo, pero no se intentará traducir: PKPANTALLAS.TRAZA(NULL, NULL,
<texto fijo>, 'MSG');

Ejemplo:

CREATE OR REPLACE FUNCTION test_mensaje RETURN VARCHAR2 IS

 v_articulo articulos.codigo_articulo%TYPE := 'ARTPRUEBA';

BEGIN

 pkpantallas.set_msg_replace_texto('<art>', v_articulo);

 pkpantallas.traza('TEST', 'NO_STOCK', NULL, 'MSG');

 pkpantallas.traza('TEST', 'PRUEBA', NULL, 'MSG');

 pkpantallas.traza(NULL, NULL, 'Mensaje no traducible, tratar de evitar', 'MSG');

 RETURN('GEN');

END;

/

El programa llama a esa función:

DECLARE

 v_resultado VARCHAR2(30);

BEGIN

 v_resultado := test_mensaje();

 IF v_resultado != 'OK' THEN

 MSG.MENSAJE('PROCE', 'GENERAL');

 END IF;

END;

9

Crear Mensajes

Para crear los mensajes se hará desde el programa “MENSAJ”.

• Grabar Logfile: Si se activa cada vez que se muestre el mensaje dejará un registro de auditoría

con que usuario y fecha se ha mostrado.

• Botón Ok: Muestra un botón con la etiqueta "Aceptar" o con el texto indicado en "Etiqueta 1". Si

se desea un mensaje con tres botones, esta check deberá dejarse desmarcada.

• Botón Cancelar: Muestra un botón con la etiqueta “Cancelar” o con el texto indicado en "Etiqueta

2". Si se desea un mensaje con tres botones, esta check deberá dejarse desmarcada.

• Confirmación: Si se activa, al usuario se le pedirá que teclee el contenido de “Texto Confirmación

OK” para aceptar el mensaje o “Texto Confirmación Cancelar” para cancelar el mensaje, de esta

forma se evita que el usuario pase sin leer el mensaje. Valores posibles:

o No: Se visualiza el mensaje de forma normal, no es necesario que el usuario teclee nada.

o Sí - Independiente de Mayúsculas / Minúsculas: El usuario tiene que teclear los textos

especificados en “Texto Confirmación OK” o “Texto Confirmación Cancelar”, pero

puede teclear en mayúsculas o minúsculas, es indiferente.

o Sí - Texto Exacto: El usuario tiene que teclear exactamente el texto del mensaje, con las

mismas mayúsculas o minúsculas definidas en los textos de confirmación.

• Emitir Sonido: Permite configurar a nivel de cada mensaje si se debe o no de emitir un sonido al

mostrarse el mensaje. Los valores posibles son:

o Sí: Para el mensaje siempre se emitirá un sonido, independientemente de la

parametrización del usuario.

o No: Nunca se va a emitir un sonido para ese mensaje, independientemente de la

parametrización del usuario.

o Según Usuario: Dependerá de lo que tenga configurado el usuario en (U_MCONFG -

Configurar usuario) o en (U_CONEM - Configurar grupo empresarial) en el campo

"Sonido al mostrar un mensaje".

• Icono: (Requiere Forms 14c). Permite indicar un icono que se mostrará en el recuadro del mensaje.

Para indicar un icono se dispone de lista de valores para poder seleccionar entre los iconos

disponibles en Libra.

• Posicionar Botón Cancelar en 1er lugar: Si se activa, el botón “Cancelar” aparecerá seleccionado

por defecto.

• Mostrar en barra de estado: Se puede activar para mensajes de poca importancia, de forma que

únicamente se muestra el mensaje en la barra inferior y el usuario puede seguir trabajando

normalmente sin tener que aceptar ningún mensaje.

https://libraupdate.libracloud.com/ayudas_erp/u_mconfg.html
https://libraupdate.libracloud.com/ayudas_erp/u_mconfg.html
https://libraupdate.libracloud.com/ayudas_erp/u_mconem.html

10

• Etiqueta 1, 2, 3: Con esos campos se puede alterar el texto que aparece el cualquiera de los 3

botones que puede mostrar un mensaje.

• Código pl/sql botón 1, 2, 3: Código PL/SQL que se ejecutará cuando el usuario pulse en algunos

de los botones del mensaje. Ver apartado “Código PL/SQL” para más información.

• Código pl/sql previsualización: Código PL/SQL que se ejecutará antes de lanzar el mensaje.

Tiene acceso de lectura y modificación de la definición del mensaje, así como de los campos del

programa que lo lanza. Para el acceso a las variables del mensaje utilizaremos el

pkpantallas.set_variable_env y pkpantallas.get_variable_env_xxx (según corresponda) con estas

constantes: PKLIBPNT_MSG_DESCRIPCION, PKLIBPNT_MSG_BOTON_OK,

PKLIBPNT_MSG_BOTON_CANCEL, PKLIBPNT_MSG_ETIQUETA_BOTON_1,

PKLIBPNT_MSG_ETIQUETA_BOTON_2, PKLIBPNT_MSG_ETIQUETA_BOTON_3,

PKLIBPNT_MSG_FORZAR_CONFIRMA, PKLIBPNT_MSG_VALOR_CONF_OK,

PKLIBPNT_MSG_VALOR_CONF_CANCEL, PKLIBPNT_MSG_CODIGO_PL_SQL_B1,

PKLIBPNT_MSG_CODIGO_PL_SQL_B2, PKLIBPNT_MSG_CODIGO_PL_SQL_B3,

PKLIBPNT_MSG_POS_BOTON_CANCEL, PKLIBPNT_MSG_MOSTRAR_EN_BARRA

Mensajes con 3 botones, si no se activa la check “Botón Ok” ni la check “Botón Cancelar” se mostrará un

mensaje con 3 botones, el primer botón con la etiqueta “Si”, el segundo con la etiqueta “No” y el tercero

con la etiqueta “Cancelar”.

Texto confirmación aleatorio (captcha): En el caso de activar forzar confirmación, es posible especificar

que el texto sea el resultado de la ejecución de DBMS_RANDOM.string(opt,len), insertando en la sección

de descripción el código <random:x:n> dónde “x” se corresponde con un valor válido para opt

(‘U’,’L’,’A’,’X’,’P’) y “n” un entero entre 1 y 30 enviado a len.

Atributos Visuales

Es muy importante su uso para poder modificar la apariencia mediante parametrización. Normalmente las

clases de propiedad ya llevan asociado el atributo visual correspondiente. Tenemos definidos los siguientes

atributos visuales:

• V1: Atributo visual para el registro actual.

• V2: Atributo visual de campos editables numéricos o alfanuméricos.

• VDISPLAY: Atributo visual de campos no editables, normalmente descripciones.

• VQUERY: Atributo visual para modo entrada de consulta.

• VQUERY_DISPLAY: Atributo visual para modo entrada de consulta.

• VCHECK_BOX: Atributo visual para campos de tipo check.

• VBOTON: Atributo visual para botones

• CAMPO_OBLIGATORIO_PROMPT: Atributo visual para la etiqueta de campos obligatorios.

• CAMPO_OPCIONAL_PROMPT: Atributo visual para la etiqueta de campos opcionales.

• VLIENZO: Atributo visual para lienzos.

• VENTANA: Atributo visual de la ventana.

• VLOGO: Para los logos

• VALERTA: Para las alertas

V1: Se especificará a nivel de bloque en la propiedad Grupo de Atributos Visuales del Registro Actual.

V2, VCHECK_BOX, BOTÓN: Se especificarán a nivel de ítem en la propiedad Grupo de Atributos

Visuales.

CAMPO_OBLIGATORIO_PROMPT, CAMPO_OPCION_PROMPT: Se especificarán a nivel de

ítem en la propiedad Grupo de Atributos Visuales del prompt.

VLIENZO: Se aplicará a los lienzos en la propiedad Grupo de Atributos Visuales.

Cada usuario tiene un perfil de configuración de colores, fuentes, ..., para ello es muy importante usar las

clases de propiedades y atributos visuales definidas en el componente FORMULARIO_BASE.

11

Clases de propiedad

Las clases de propiedad son agrupaciones de propiedades con un valor prefijado para los componentes del

formulario (campos, lienzos, ventanas, …). Este valor se asignará automáticamente al componente que se

le asigne la clase.

Para indicar a qué clase de propiedad pertenece un ítem se asignará en la propiedad Información de

Subclase.

Seleccionamos en el botón de radio Clase de Propiedad y le damos el Nombre de Clase de propiedad.

Una propiedad de un ítem que tenga asociada una clase de propiedad puede estar en alguno de los siguientes

estados:

• Heredado de la clase de propiedad.

• Rota la herencia con la clase de propiedad, es decir se ha modificado la propiedad para este

ítem en concreto. , para volver a realizar la herencia simplemente pulsamos y el valor

de la propiedad vuelve al estado original establecido en la clase.

• No heredado, pero no se ha modificado el valor de la propiedad, por tanto, el valor que tiene

es el estándar para el Campo de Forms. . Si se añadiese esa propiedad a la clase de propiedad

asignada al ítem la heredaría de forma automática.

• No heredado, pero se ha modificado el valor estándar de la propiedad, , para volver al valor

original por defecto de Forms pulsaremos .

Es muy importante el uso de clases de propiedad y que rompamos la herencia sólo en los casos que sea

estrictamente necesarios, de esta forma cualquier cambio masivo se alguna propiedad se limitará a

modificar la clase en la librería de objetos y recompilar todos los programas.

Las clases de propiedad se dividen en las siguientes:

• Clases de propiedad para campos que se encuentren en un bloque multiregistro:

o CLASE_DISPLAY_ITEM_GRID: Campos de visualización.

o CLASE_ITEM_NUMBER_GRID: Campos numéricos.

o CLASE_TEXT_ITEM_GRID: Campos alfanuméricos.

o CLASE_ARCHIVO_GRID: Campo que va almacenar un archivo, ver apartado: Gestión

de Archivos.

o CLASE_DATE_ITEM_GRID: Campos de tipo fecha.

• Clases de propiedad para campos que no se encuentren en un bloque multiregistro:

o CLASE_DISPLAY_ITEM: Campos de visualización.

o CLASE_TEXT_ITEM: Campos alfanuméricos.

o CLASE_TEXTAREA_ITEM: Campos que muestran varias líneas y permiten retornos

de carro en el texto introducido en él.

12

o CLASE_TEXT_ITEM_NUMBER: Campos numéricos.

o CLASE_LIST_ITEM. Campos de lista desplegable.

o CLASE_LIST_COMBO_BOX_ITEM: Campos de tipo list-item en donde el usuario

puede teclear un nuevo valor distinto a los prefijados.

o CLASE_TLIST_ITEM: Es similar al list-item, pero el usuario visualiza más de una

opción.

o CLASE_ARCHIVO: Campo que almacenará un archivo, ver apartado: Gestión de

Archivos.

o CLASE_DATE_ITEM: Campos de tipo fecha.

• Clases de propiedad válidas tanto para multiregistros como para items que no estén en un

multiregistro:

o CLASE_BUTTON. Botones.

o CLASE_CHECK_BOX. Campos de tipo check.

o CLASE_RADIO_GROUP. Campos de selección de tipo radio.

• Clases de para logos e imágenes:

o CLASE_IMAGEN. Al asignar esta clase ya se incorpora el menú contextual para cargar

la imagen.

• Clases de propiedad para objetos que no sean items.

o CLASE_MARCO: Marcos de agrupación de objetos.

o CLASE_FORM: Clase de formulario.

o CLASE_BLOQUE: Clase para bloques que no sean multiregistro.

o CLASE_BLOQUE_REG_UNICO: Clase para bloques que solo puedan tener un solo

registro, por ejemplo, pantallas de filtros para consultas.

o CLASE_BLOQUE_SCROLL: Clase para bloques multiregistro.

o CLASE_PAGE. Clases para Lienzos.

o CLASE_VENTANA. Clase para ventanas.

o CLASE_LOGO: Clase para los logos (Obsoleta).

Nota: Los marcos tienen propiedad de título, pero trataremos de no ponerles nunca un título ya que no se

puede modificar por código y por tanto no se puede traducir.

Campos de tipo elemento de lista

En Forms no existe la propiedad de bisel de un campo de tipo lista desplegable, por tanto, siempre va a

tener apariencia de hundido, y no queda bien dentro de un grid de datos, por tanto, trataremos de ponerlo

como registro único o evitar su uso.

Ejecución de programas por código

En Libra hay múltiples variantes de programas y no todas ellas tienen un ejecutable de forms asociado, por

ejemplo, programas de tipo “Ejecuta Metadatos”, “Programas” …, no se pueden llamar usando

CALL_FORM o OPEN_FORM y en su vez hay que utilizar FMENU.LLAMA_FORM.

FMENU.LLAMA_FORM tiene los mismos parámetros que CALL_FORM y por tanto se puede reemplazar

uno por otro sin problema, de todas formas, los parámetros que se pasan a los programas no se pueden pasar

con una lista de parámetros de Forms ya que esos parámetros en ocasiones tienen que ser convertidos al

formato que acepte el programa que se quiere ejecutar, para ello hay que construir la lista de parámetros de

tipo “pkpantallas.tabla_param_llamada_plug_in” y antes de llamar a FMENU.LLAMA_FORM hay que

indicar que se quieren usar con el procedimiento FMENU. SET_PARAMETROS_LLAMA_FORM.

13

Para construir la lista de parámetros hay que tener una variable de tipo

“pkpantallas.tabla_param_llamada_plug_in” y para ir cargando parámetros se llamará a

FMENU.ADD_PARAMETRO(<código parámetro>, <tipo>, <valor>);

• <código parámetro>: Nombre del parámetro que espera el programa llamado.

• <tipo>: Forma de interpretar el valor indicado en <valor>, en el caso de pasar ‘C’ el valor indicado

en <valor> se considera constante. Si se pasa ‘R’ considera que se está indicando

BLOQUE.CAMPO y que en el momento de incorporar el parámetro debe de leer el valor de ese

campo.

• <valor>. Dependiendo de <tipo> será un valor constante o BLOQUE.CAMPO.

Ejemplo:

DECLARE

 v_t_parametros pkpantallas.tabla_param_llamada_plug_in;

BEGIN

 FMENU.ADD_PARAMETRO(v_t_parametros, 'P_CODIGO', 'C', '001');

 FMENU.ADD_PARAMETRO(v_t_parametros, 'P_CLIENTE', 'R', 'B1.CLIENTE');

 FMENU.SET_PARAMETROS_LLAMA_FORM(v_t_parametros);

 FMENU.LLAMA_FORM('programa', NO_HIDE, DO_REPLACE, QUERY_ONLY);

END;

Si en el parámetro “display” (es decir, el segundo parámetro de FMENU.LLAMA_FORM) se pasa el valor

SESSION, en vez de ejecutarse el programa con un CALL_FORM se ejecutará con un OPEN_FORM, de

manera que el programa llamador no se queda a la espera de que termine el programa llamado.

Campos de visualización de descripciones

Para los campos que visualicen la descripción almacenada en otra tabla, usaremos como nomenclatura el

nombre del campo código con el prefijo D_.

Por ejemplo, si tenemos el código del cliente y tenemos que visualizar su nombre, y el código del cliente

se encuentra en un campo llamado CODIGO_CLIENTE, el nombre del cliente se mostrará en un campo

llamado D_CODIGO_CLIENTE.

Al campo en donde queremos ver la descripción le aplicamos la clase de propiedad

CLASE_DISPLAY_ITEM o CLASE_DISPLAY_ITEM_GRID.

En el mantenimiento de programas y programas personalizados en la pestaña “Avanzadas de Campo” hay

un campo “Nombre de Columna Consulta”, en este campo se meterá la SQL para obtener la descripción.

Por ejemplo en un programa en el que se tenga que obtener el nombre del cliente en el campo

D_CODIGO_CLIENTE, se introducirá en el mantenimiento de programas un campo

D_CODIGO_CLIENTE y en “Nombre de Columna Consulta” se introducirá la siguiente sentencia (SELECT
nombre FROM clientes c WHERE c.codigo_rapido = clientes_prueba.cliente AND

c.codigo_empresa = clientes_prueba.empresa).

Se puede observar que se usa CLIENTES_PRUEBA en la WHERE en vez de un alias, en esta consulta

para hacer referencia a la tabla a la que está asociado el bloque lo hay que hacer por el nombre de la tabla,

no se puede usar un alias.

14

Es posible indicar que la consulta se obtenga en tiempo de ejecución de una determinada lista de valores,

para ello en el campo “Nombre Columna Consulta” en vez de introducir la consulta se pulsa sobre el botón

de lista de valores o con F9 para ir a un asistente.

15

El asistente nos pedirá los siguientes datos:

• Lista de Valores: Código de la lista de valores que se utilizará para obtener la descripción.

• El campo código puede ser null: Si activamos esta check, le estamos indicando que el código

puede ser nulo y por tanto debe optimizar la consulta para esa casuística.

• Campo Código: Sólo aparece si se activa "El campo código puede ser null" y ahí podemos

indicar qué campo consideramos código, en el caso de no indicarlo se considerará la primera

variable de la consulta de la lista de valores.

• Campo NVL: Indicamos que únicamente se realizará la consulta si el campo que se indica es

NULL, por ejemplo, si es una consulta sobre ALBARAN_VENTAS_LIN, indicaremos el

campo ALBARAN_VENTAS_LIN.DESCRIPCION_ARTICULO, ya que si el albarán tiene

la descripción almacenada no hace falta ir al artículo a buscarla.

A continuación, hay que mapear cada variable de la consulta con el campo de la tabla. En el ejemplo

anterior, si la tabla es ALBARAN_VENTAS_LIN la variable {codigo_articulo} se mapea con

"albaran_ventas_lin.articulo" y la variable {codigo_empresa} con "albaran_ventas_lin.empresa".

IMPORTANTE: En el caso de que se permita insertar, modificar o borrar registros hay que activar la

propiedad de clave primaria a los campos que sean clave primaria. Si la tabla no tiene clave primaria no se

puede usar esta opción, y habrá que usar el disparador POST-QUERY.

16

Listas de Valores

Como principal ventaja de este sistema de listas de valores es que se pueden personalizar de forma muy

sencilla para una determinada instalación.

Para usar las listas de valores solo se necesita incorporar un grupo de objetos (LISTA_VALORES) a los

programas.

Este sistema de listas de valores también da soporte de validación del campo incluso si no se ha

introducido el dato por la lista de valores, de esta forma la validación de los programas que usan una

misma lista de valores siempre va a ser exactamente igual, con lo que se optimiza el uso de la memoria

SHARED_POOL de la base de datos.

MUY IMPORTANTE: Para el correcto funcionamiento de los programas, todo el código que se meta en

los disparadores PRE-RECORD, PRE-BLOCK, WHEN-NEW-BLOCK-INSTANCE, WHEN-NEW-

RECORD-INSTANCE debe de ir entre la condición IF NOT lv.viene_de_lista THEN a excepción de la

llamada al DISPSTD correspondiente, por ejemplo:

DISPSTD.WHEN_NEW_BLOCK_INSTANCE;

IF NOT lv.viene_de_lista THEN

 <código del disparador>

END IF;

Limitaciones

Las listas de valores tienen como limitación principal el número máximo de columnas, que sólo pueden ser

20, estas pueden ser de tipo alfanumérico, numérico (también en Forms 14c se permite el tipo fecha). Si

hace falta una lista de valores más compleja la deberemos implementar dentro del programa o mediante un

plug-in (ver apartado de plug-in).

No están soportadas sqls que hagan una UNION de varias SELECT, en caso de ser necesario se tendrá

que crear una vista de base de datos. Tampoco están soportadas listas de valores que hagan un DISTINCT,

en ese caso habrá que añadir al final de la where un GROUP BY por todos los campos que saca la consulta

para conseguir el mismo efecto.

Pasos para crear una lista de valores

Para crear una lista de valores desde cero, iremos al mantenimiento de listas de valores de libra,

(U_MLISVA).

17

En el código de la lista de valores se debe introducir siempre que sea posible el nombre de la tabla, solo

usaremos otro nombre cuando queramos hacer una personalización específica de una lista de valores.

El título que queremos que aparezca en la ventana que abre la lista de valores lo introduciremos en el campo

Descripción.

Cualquier columna puede contener el código que queremos devolver al campo desde donde que se llama a

la lista de valores, esto se especifica en el campo Columna Código, por tanto, deberá de contener un valor

entre 1 y 20 dependiendo de los campos que se visualicen. Este campo también se usará para la validación

del campo cuando se introduce de forma manual por teclado. Internamente para hacer la validación le

añadirá a la WHERE de la lista de valores la condición de que el campo especificado como código sea igual

al valor introducido por el usuario.

Podemos definir en el campo Columna Descripción el número de columna de la que se ha de obtener la

descripción a devolver al programa, por tanto, deberá de contener un valor entre 1 y 20 dependiendo de los

campos que sean visualizados, la lista de valores devolverá esta descripción al campo con el mismo

nombre del campo desde el que se llama a la lista, pero con el prefijo D_. Esto obliga a ser muy estrictos

en la nomenclatura que se utiliza en los campos que muestran descripciones.

La base para mostrar la lista de valores es una consulta SQL de tipo SELECT ... con la siguiente

particularidad: Los campos que queremos que se visualicen deberán de contener un alias del tipo:

• Columnas con valor alfanumérico: c1, c2, …, c20.

• Columnas con valor numérico: n1, n2, …, n20.

• Forms 14c: Columnas con valor fecha: f1, f2, …, f20.

Notas:

• Si hemos especificado una columna de un tipo no podemos especificar la misma de otro tipo, es

decir, si hemos especificado el alias c1 no podremos tener otra columna con el alias n1.

• Si se quiere sacar una fecha y la lista de valores únicamente va ser utilizada en Forms 14c lo mejor

es ya declararla como tipo fecha, pero si la lista de valores también se puede utilizar en

instalaciones con Forms 12c la meteremos como un campo alfanumérico y para que ordene

correctamente no se le aplicará ninguna conversión de tipo, es decir, si se pone como

TO_CHAR(campo_fecha, 'DD/MM/YYYY') c4, cuando el usuario haga una ordenación la hará

alfanumérica en vez de fecha, por lo que lo correcto sería simplemente poner campo_fecha c4.

MUY IMPORTANTE 1: Las columnas a visualizar han de tener el alias cx ó nx donde x es un número

entre 1 y 20 y a continuación una coma y un espacio.

18

MUY IMPORTANTE 2: Si hay columnas que se calculan con una subquery (SELECT campo FROM

xxxxx), es recomendable meter antes del FROM tabla_principal la etiqueta /*FRLV*/ para que el entorno

busque de forma más precisa el punto en donde se encuentra la tabla principal. Si no se indica se intentará

localizar, pero hay casos en los que no será capaz y puede producir un funcionamiento con errores.

Ejemplos:

Casos incorrectos:

• SELECT nombre c1 , codigo c2,: Incorrecto ya que hay un espacio después del alias c1.

• SELECT nombre c1,codigo c2: Incorrecto ya que no hay espacio que separa la coma del alias

c1 y de la columna siguiente:

Lo correcto para los dos casos anteriores sería:

• SELECT nombre c1, codigo c2

Aparte de los campos que se visualizarán en la lista de valores también deberemos sacar siempre el rowid

de la tabla principal de la SELECT con el alias rowid_lov y este campo debe de ser el último de los campos

que selecciona la sentencia SQL.

Ejemplo:

SELECT codigo c1, nombre c2, rowid rowid_lov FROM agentes

Ejemplo más complejo:

SELECT codigo_articulo C1,

(SELECT DECODE(TIPO_DESC_ART,'V',articulos.descrip_comercial, 'C',articulos.descrip_compra,

'T',articulos.descrip_tecnica,articulos.descrip_comercial)

FROM usuarios WHERE usuarios.usuario =:GLOBAL.USUARIO) C2, rowid rowid_lov

/*FRLV*/ FROM ARTICULOS

NOTA: véase que se ha añadido la etiqueta /*FRLV*/ para indicar en donde comienza el FROM principal

de la consulta.

Para cada programa podremos especificar una cláusula WHERE específica para la lista de valores, pero en

la misma lista de valores ya podemos especificar una por defecto. En la cláusula WHERE se pueden usar

referencias a campos, variables globales, ... de Forms, un ejemplo típico sería empresa =

:global.codigo_empresa

Es posible controlar desde funciones de base de datos la consulta que ejecutará una lista de valores, para

ello entre las etiquetas :SF: y :EF: se puede introducir una función que devuelva la SELECT o parte de

ella.

Por ejemplo, en el caso que se mostró en “Ejemplo más complejo”, se podría simplificar la consulta para

evitar que se haga uso de la tabla USUARIOS por cada fila que viene de la tabla quedando la consulta de

la siguiente forma:

SELECT codigo_articulo c1, :SF:pk_va_articulos.get_campo_descripcion_art(:global.usuario):EF: c2, rowid

rowid_lov

FROM artículos

En este caso, :SF:pk_va_articulos.get_campo_descripcion_art(:global.usuario):EF: devolverá

descrip_comercial, descrip_compras o descrip_tecnica en base a la parametrización de usuario validado.

De esta forma si el usuario tuviese parametrizada la descripción comercial la consulta que tendría la lista

de valores sería: SELECT codigo_articulo c1, descrip_comercial c2, rowid rowid_lov FROM

articulos, al simplificar la consulta se consigue un mejor rendimiento en la ejecución de la lista de valores.

Mediante esta funcionalidad se podría cambiar el 100% el origen de la consulta, por ejemplo:

:SF:F_TEST(:global.codigo_empresa,:global.usuario):EF:, ejecutará la función F_TEST que

devuelve la consulta a utilizar. Ejemplo de F_TEST:

CREATE OR REPLACE FUNCTION F_TEST(p_empresa VARCHAR2, p_usuario VARCHAR2) RETURN VARCHAR2 IS

BEGIN

 RETURN ('SELECT codigo_articulo c1, ''PRUEBA'' c2, rowid rowid_lov FROM articulos');

END;

19

Para cada columna que se va a visualizar en la lista de valores hemos de introducir los siguientes campos:

• Número: Número correlativo entre 1 y 20 que identifica la columna, debe de corresponder

con el número especificado en el alias en la SELECT.

• Tipo: Puede contener dos valores:

o C: Columna alfanumérica.

o N: Columna numérica.

• Orden: Cuando se lanza la lista de valores ya se puede forzar un ordenamiento inicial, en este

campo se debe especificar el número de orden que va a ocupar este campo dentro del ORDER

BY de la sentencia SQL. Si se introduce 0 se indica que no se quiere que ese campo forme

parte de la ordenación inicial.

• Tipo Orden: Tipo de ordenación inicial del campo, puede contener dos valores:

o A: Ascendente.

o D: Descendente.

• Descripción Columna: Título que va a tener la columna.

• Ancho: Ancho en pulgadas de la columna.

• Ancho Pocket: Ancho en pulgadas de la columna cuando la lista se muestra en un puesto que

es de tipo “Pocket”.

• Máscara: Sólo se puede aplicar a columnas numéricas y se pondrá la máscara de formato con

la que se debe de mostrar el número. En caso de que sean cantidades se puede poner CTD y

aplica la máscara de formato correspondiente a los decimales establecidos en la empresa para

las cantidades.

• Desactivar totalización en Listas de Valores de Multiselección Totalizadas: Hay un tipo

de lista de valores en donde el usuario puede seleccionar los registros y las columnas

numéricas son totalizadas, si se activa esta check para un campo numérico la columna no será

totalizada.

• Independiente de Mayúsculas / Minúsculas: Si se indica “Sí”, cuando se haga una búsqueda

en ese campo, se hará independientemente de que en la tabla esté almacenado en mayúsculas

/ minúsculas e independientemente de que el patrón de búsqueda esté en mayúsculas o

minúsculas. Indicando “No” las búsquedas serán sensibles a mayúsculas o minúsculas. Si se

indica “Según Usuario” se utilizará el valor por defecto para este fin indicado a nivel de

configuración de empresa / usuario.

• Búsqueda Contextual: Mediante esta check se pueden indicar las columnas sobre las que la

búsqueda contextual debe realizar la búsqueda. En el supuesto de que no esté marcada ninguna

columna, la búsqueda contextual se aplicará sólo sobre la columna que está marcada como

“Columna Descripción”, pero si se marca alguna columna como “Búsqueda Contextual”, la

“Columna Descripción” será ignorada, a no ser que se marque también esta columna.

Tanto el título de la ventana como el título de la columna se pueden cambiar por idioma, para ello se deberá

cubrir las dos secciones de idiomas.

Existe una opción en la botonera vertical para exportar la lista de valores en formato SQL.

Asociar programa a una Lista de Valores

Es posible asociar un programa a una Lista de Valores. Esta funcionalidad es muy útil cuando el usuario

saca la lista de valores y se da cuenta que el registro que necesita no existe, por tanto, se da la posibilidad

de navegar al programa que se especifica para poder crear ese registro.

Para indicar el programa asociado a la lista de valores indicaremos el nombre del programa en el campo

Programa. El botón de navegación únicamente se habilitará si este campo está cubierto y el usuario tiene

permisos de altas en ese programa.

Aparte de navegar al programa asociado desde la lista de valores cuando el usuario entra en el campo que

tiene la lista de valores puede hacer doble click sobre el campo o pulsar sobre el botón de hipervínculo del

menú y lo llevaría también al programa sin necesidad de abrir la lista de valores.

20

Cuando se navega al programa se pueden pasar dos parámetros al programa llamado:

• Valor que contiene el campo: Para pasar el valor que tiene el campo hay que indicar el nombre

del parámetro en “Parámetro Llamada”

• Código de la lista de valores: Se puede pasar el código de la lista de valores al programa para

que pueda actuar de forma distinta según la lista de valores desde donde es llamado. Para ello hay

que indicar en que parámetro del programa llamado hay que pasar el código de la lista de valores

cubriendo el campo “Parámetro envío código de LV al llamar programa” en la pestaña “Opciones

Avanzadas”.

Segunda Cláusula Where para una lista de valores.

A una lista de valores podemos especificar una segunda cláusula where, y cuando se especifica al llamar a

la lista de valores aparecerá un botón para poder conmutar la consulta entre la cláusula where normal y la

segunda. Para el botón que aparece le indicaremos qué etiqueta debe de tener según la cláusula where que

está aplicando, para eso son los campos “Etiqueta Botón Where Defecto” será la etiqueta que muestre

cuando se está filtrando por la where por defecto y “Etiqueta Botón Where Defecto 2” será la etiqueta que

muestre cuando está filtrando por la segunda lista de valores.

Se puede indicar cuál de las cláusulas where debe de usarse para efectuar la validación del campo, para ello

se añadió el desplegable “Tipo Where Validación” que puede tener los siguientes valores:

• Principal: Siempre se valida usando la cláusula where por defecto, no se usa la segunda cláusula

where en la validación.

• Secundaria: Siempre se usa la segunda cláusula where, la cláusula where por defecto no será

usada en la validación.

• Personalizada: Al seleccionar esta opción se habilita un nuevo campo donde indicar la una

cláusula where específica para la validación independiente de las usadas en para mostrar los

registros en la lista de valores.

21

Por ejemplo podemos hacer que la lista de valores CLIENTES_GESTION habilite un botón donde ponga

“Bloqueados” y al pulsar sobre él consultar los clientes que están bloqueados, para ello metemos en el

campo Clausula Where por Defecto 2 la siguiente where: WHERE codigo_empresa = :GLOBAL.codigo_empresa
AND EXISTS (SELECT 1 FROM bloqueo_clientes WHERE empresa = :GLOBAL.codigo_empresa AND

codigo_cliente = codigo_rapido AND (usuario = :GLOBAL.usuario OR usuario IS NULL) AND

(TRUNC(SYSDATE) >= desde_fecha) AND (TRUNC(SYSDATE) <= hasta_fecha)) AND

PKVALIDAR_ENTIDADES.CLIENTE(CODIGO_RAPIDO,:GLOBAL.CODIGO_EMPRESA,:GLOBAL.USUARIO,SYSDATE)='OK'

Y en el campo “Etiqueta Botón Where Defecto” metemos el texto: Bloqueados y en “Etiqueta Botón Where

Defecto 2” metemos el texto “Desbloqueados”.

Al pulsar sobre la lista de valores saldrá de la siguiente forma:

Y al pulsar sobre el botón “Bloqueados” saldrá:

NOTA: Cuando se asigna una lista de valores a un programa se puede establecer para ese campo en

concreto este funcionamiento sin alterar la lista de valores.

22

Cláusulas Where dinámicas.

El objetivo de generar condiciones “where” dinámicas sobre una lista de valores es mejorar la velocidad

de carga de estas.

El principio de funcionamiento se basa en integrar una función que devuelva una where lo más adecuada

posible a la instalación en base al usuario y la empresa a la que se ha conectado.

La idea es hacer una función que devuelva la where a añadir a la lista de valores, para ello, la función que

devuelve la where irá entre las etiquetas :SF: y :EF:

Ejemplo: empresa = :global.codigo_empresa :SF:F_MI_FUNCION(:global.usuario, :global.empresa,

'clientes.codigo_rapido'):EF:

Código de ejemplo de F_MI_FUNCION que aplicará a la where el control de CLIENTES_PERMITIDOS

únicamente cuando tiene datos:

CREATE OR REPLACE FUNCTION f_mi_funcion(p_usuario VARCHAR2, p_empresa VARCHAR2, p_campo VARCHAR2) RETURN VARCHAR2 IS

 v_cw pkpantallas.type_max_plsql_varchar2;

 v_hay_reg VARCHAR2(1);

 CURSOR cur_existe(pc_usuario VARCHAR2, pc_empresa VARCHAR2) IS

 SELECT 'S'

 FROM clientes_permitidos cp

 WHERE cp.usuario = cur_existe.pc_usuario

 AND cp.empresa = cur_existe.pc_empresa;

BEGIN

 OPEN cur_existe(p_usuario, p_empresa);

 FETCH cur_existe INTO v_hay_reg;

 IF cur_existe%NOTFOUND THEN

 v_hay_reg := 'N';

 END IF;

 CLOSE cur_existe;

 IF v_hay_reg = 'S' THEN

 v_cw := 'AND EXISTS (SELECT 1 FROM clientes_permitidos cp WHERE cp.usuario = :global.usuario AND cp.empresa = :global.codigo_empresa AND

cp.cliente = ' || p_campo || ')';

 END IF;

 RETURN(v_cw);

EXCEPTION

 WHEN OTHERS THEN

 pkpantallas.log(sqlerrm, 'F_MI_FUNCION', 'OTHERS');

 RAISE;

END f_mi_funcion;

Si el usuario tiene registros en la tabla CLIENTES_PERMITIDOS aplicará la siguiente condición: empresa
= :global.codigo_empresa AND EXISTS (SELECT 1 FROM clientes_permitidos cp WHERE cp.usuario

= :global.usuario AND cp.empresa = :global.codigo_empresa AND cp.cliente =

cl.codigo_rapido)

Si no hay registros aplicará simplemente: empresa = :global.codigo_empresa

Código PL/SQL de Pre-Validación

23

Se puede utilizar el código de pre-validación para ser ejecutado antes de que se realice la validación con la

SQL de la lista de valores. Esto se ve muy claro con el ejemplo de la tabla ARTICULOS de libra, ya que

el usuario puede teclear el código (es lo que valida la lista de valores), el código sinónimo, código de barras,

etc. Por tanto, este código puede cambiar la introducción del usuario haciendo una llamada a un paquete de

base de datos.

Para ver con más detalle cómo se construye este código PL/SQL ver el apartado “Código PL/SQL”.

Código PL/SQL de Validación

El código PL/SQL se ejecutará en todos los campos que tengan asociada la lista de valores, y se ejecuta

después haberse realizado la validación contra los registros de la lista de valores, por lo tanto, ya se puede

considerar que el dato que tiene el campo ya es válido, pero requiere una validación más exhaustiva usando

PL/SQL. Este PL/SQL se ejecuta de forma adicional al código pl/sql de validación que pueda tener a nivel

individual el campo.

Colorear determinados registros en Listas de Valores

Se puede especificar un determinado color para unos registros de una lista de valores, por ejemplo, para

marcar artículos sin stock, clientes bloqueados,

Ejemplo: Lista de Valores que colorea los artículos que el código comienza por 2.

24

Para parametrizar este funcionamiento hay que añadir una nueva columna a la SQL de la SELECT como

si fuese una columna más de la lista de valores que devuelva el atributo visual a aplicar al registro y ponerle

un alias cX, siendo X un número de columna de tipo carácter no usado en la lista de valores. El campo no

hace falta introducirlo en la lista de campos de la lista de valores, con lo cual no lo muestra en la lista de

valores.

En el ejemplo habría que añadir lo siguiente únicamente en la select de la lista de valores:
DECODE(SUBSTR(articulos.codigo_articulo, 1, 1), '2', 'ROJO', NULL) c3

También hay que indicarle que la columna número 3 es la que va a tener la información del atributo visual

a aplicar en el campo “Nº Columna de atributo visual de registro” de la pestaña “Opciones avanzadas”.

Si el atributo visual que se devuelve no existe en el programa no se le asignará ningún color. En programas

compilados en una versión 6.4.8 pueden utilizar cualquier color de los definidos en la vista

V_COLORES_ERP, los programas compilados en versiones anteriores tienen que limitarse a colores que

se encuentren definidos en la librería de objetos OBJETOSPANT.OLB: MARRON, MARRON_OSCURO,

MARRON_INTERMEDIO, MORADO, CYAN, AZUL_CLARO, AZUL_INTERMEDIO, VERDE_CLARO,

NARANJA, BLANCO, MARRON_CLARO, FUXIA, AZUL_VERDOSO, MATE, NEGRO, AZUL_MORADO,

VERDE_OSCURO, AMARILLO_NARANJA, AZUL_OSCURO, ROSACEO, ROJO, VERDE, AMARILLO,

AZUL.

En vez de cambiar el color de todo el registro se puede indicar que únicamente se cambie el color de uno

de los campos, para ello se puede indicar en “Nº Columna a aplicarle el color” el número de la columna

que se ha de colorear. Esto es útil cuando van a ser muchos los registros coloreados para que el usuario no

pierda la referencia del registro en el que se encuentra el cursor.

Filtros en listas de valores

Para versiones de Libra 6.2.1 o superiores existe la posibilidad de que las listas de valores tengan filtros de

forma similar a los filtros de los bloques. Para ello en el mantenimiento de Listas de valores y Listas de

valores se dispone de la pestaña "Filtros" en donde se pueden configurar.

NOTA: Esta funcionalidad es incompatible con las listas de valores con doble cláusula where.

25

Para crear un filtro hay que darle un código, una descripción y el orden en el que se le mostrarán al usuario.

Si se quiere desactivar temporalmente un filtro se puede desmarcar la check “Activo”.

En el campo “Filtro” filtro se pueden utilizar variables que le serán solicitadas al usuario, esas variables se

introducirán directamente en la condición añadiendo : (dos puntos) delante, por ejemplo, si queremos al

usuario un rango de fechas, se podría meter algo similar a esto: av.empresa = :global.codigo_empresa AND

av.fecha_pedido BETWEEN :p_desde_fecha AND :p_hasta_fecha. En este caso se indica que se quieren

usar las variables :p_desde_fecha y :p_hasta_fecha, a esas variables hay que indicar la forma en la que se

van a solicitar al usuario, para ello hay que pulsar en el botón “Variables”.

• Código: Identificador de la variable, si en a condición se usó :p_desde_fecha, el código debe

de ser P_DESDE_FECHA.

• Etiqueta: Texto que aparecerá junto al campo al generarse la pantalla de filtros del usuario.

• Lista de Valores: Código de la lista de valores que tendrá el campo del filtro.

• Valor por Defecto: Permite indicar un valor que aparecerá inicialmente al usuario y que podrá

ser modificado.

• Obligatorio: Si se activa no se dejará realizar la consulta mientras el usuario no proporcione

un valor para el filtro.

• Cláusula Where a incluir en el filtro si la variable tiene valor: Esta cláusula where

únicamente será añadida cuando el usuario introduce algún valor en la variable y permite

simplificar la consulta, sobre todo cuando la lista de valores des de tipo multiselección. En

principio el contenido del filtro se añadirá al filtro principal añadiendo al final: "AND (+ la

cláusula where de la variable +)", pero puede ser que interese que esa condición sea añadida

a una parte en concreto de la where principal ya podría estar por ejemplo dentro de una

subconsulta, en ese caso en la where principal se añadirá :CODIGO_VARIABLE y en el caso

de que el usuario no cubra ese filtro :CODIGO_VARIABLE se quita y si el usuario cubre el

filtro se reemplaza.

• Cláusula Where Lista de Valores: Filtro para los registros que visualizará la lista de valores.

Este campo está asociado al campo “Lista de valores”. Toda lista de valores puede tener

asociada una cláusula “WHERE” para todos los programas, pero esa “WHERE” quedará

anulada si en este campo se introduce una específica, de forma que se puede llegar a tener

condiciones “WHERE” distintas en cada programa. Es muy recomendable añadir la expresión

“:where_lov” que se reemplazará en tiempo de ejecución por la cláusula where que tenga la

lista de valores, de forma que un cambio de la where en la lista de valores será traslada a todos

los programas. Para hacer referencia en esta cláusula where a otra variable que se pida antes

(que tenga un orden inferior) debe de usarse ":CODIGO_VARIABLE". No debe de usarse el

26

campo interno usado, por ejemplo "BFILTROS.FILTRO_ALFA2" ya que si por algún motivo

se cambia el orden o se añaden nuevas variables ese campo va a cambiar.

• Tipo Valor: Permite indicar si el dato es “Alfanumérico”, “Numérico”, “Fecha” o de tipo

“Check”.

• Ejecutar Consulta al lanzar la Lista de Valores: Si se indica “Lista de Valores” y se

desactiva esta check al lanzar la lista de valores se iniciará en modo de entrada consulta, es

decir, se inicia esperando que el usuario proporcione un filtro inicial.

• Validar desde Lista de Valores: Si se indica “Lista de Valores” y esta check está activa,

únicamente se podrá introducir un valor de los que se puedan visualizar en la lista de valores.

• Tipo L.V.: Si el filtro tiene lista de valores permite indicar el tipo de lista de valores a utilizar.

Si se indica un tipo de multiselección en la cláusula where del filtro hay que usar el operador

IN o NOT IN. Si se selecciona la opción "Rellenar List-Item" el campo se mostrará en forma

de List-Item con los valores que devuelva la lista de valores cargados.

Mediante el desplegable “Acción a realizar sobre la lista de valores después de aplicar el filtro”, se

puede indicar:

• Ejecutar Consulta: Una vez el usuario selecciona el filtro se ejecutará consulta en la lista de

valores mostrando los registros que cumplan la condición del filtro.

• Activar el Modo de Entrada Consulta: En vez de consultar los registros, el bloque de la lista de

valores se limpiará y se pondrá en modo de entrada consulta para que el usuario pueda filtrar más

en base a aplicar patrones de búsqueda sobre los campos visibles, una vez indicados los patrones

de búsqueda puede pulsar en el botón “Ejecutar Consulta” o F8 para mostrar los registros que

cumplan la condición de búsqueda.

Plug-ins en listas de valores

Para versiones de Libra 6.2.1 o superiores existe la posibilidad de que las listas de valores tengan plug-ins

forma similar a los plug-ins de los programas. Para ello se dispone de la pestaña "Plug-in" en donde se

pueden configurar. El número máximo de plug-ins que puede tener una lista son 5.

Ejemplos de uso:

▪ Visualizar la foto de artículos.

▪ Llamar a un programa con detalle de información del registro de la lista de valores.

▪ En el control de fuentes permitirá abrir los metadatos del archivo o un programa con la historia de

cambios.

▪ etc.

27

Para obtener información de como configurar un plug-in, el funcionamiento es similar a la funcionalidad

de los plug-ins de los bloques del mantenimiento de programas. Ver el apartado Plug-ins para más

información.

Las diferencias con los plug-ins de bloques de programas son las siguientes:

• No se les puede asignar una tecla rápida.

• No se pueden asignar al menú contextual de botón derecho del ratón.

• Tiene la opción “Es Ventana Modal” que no está disponible en los bloques.

• En caso de indicar un Código PL/SQL únicamente se puede ejecutar sobre el registro en el que se

encuentra el cursor.

Es Ventana Modal: Esta check es muy importante al llamar a un programa para darle información al

entorno del tipo de programa al que se llama, si se indica que es “Ventana Modal” no hace falta que se

cierre la lista de valores antes de llamar al programa, ya que el programa al ser modal que dará por encima

de la propia lista de valores, pero si se llama a un programa que no se ejecuta en una ventana modal y se

activa esta check, Libra se quedará bloqueado ya que quedará la lista de valores por encima del programa

y el usuario no podrá interactuar con ninguno de los dos programas.

Ejemplo de lista de valores con plug-ins:

Mejoras de búsquedas contextuales

Se puede mejorar la búsqueda contextual, haciendo que busque por el sonido de la pronunciación de una

palabra. Por ejemplo, búsquedas independientes de si una palabra se escribe con B o con V, etc.

Para activar este tipo de búsquedas contextuales en una lista de valores hay que cubrir en la pestaña de

“Opciones avanzadas” los campos “Atributo 1 para TRANSLATE de búsqueda contextual” y “Atributo 2

para TRANSLATE de búsqueda contextual”. Lo que especifiquemos en el atributo1 lo sustituirá letra a

letra por el del atributo2, por ejemplo, si en el atributo1 ponemos VYS y en atributo 2 ponemos BIX, la V

la sustituirá en la búsqueda por B, la Y la sustituirá por I y la S por la X.

28

Envío del contenido de una lista de valores a Hoja de Cálculo.

En la pestaña “Opciones Avanzadas” existe la check “Activar Enviar a Excel” que si está activada permite

al usuario que envíe el contenido que está viendo en la lista de valores a Excel

Para que se active la Excel el usuario debe tener activado que puede enviar datos de pantalla a Excel en el

programa de personalizar estética.

Posicionado de una lista de valores en Pantalla

Por norma general una lista de valores se centrará en la pantalla del programa que la llama. Si el puesto que

está ejecutando el programa está marcado como de tipo “Pocket” la lista de valores se posicionará en la

posición 0,0. En el caso de que una determinada lista de valores se quiera posicionar en un área específica

de la pantalla se pueden indicar las coordenadas mediante los campos “Posición X” y “Posición Y”.

Consulta para obtener la descripción

La lista de valores puede contener la consulta que deben de ejecutar los programas para obtener la

descripción a mostrar en los programas. En el campo “Nombre Columna Consulta Descripción” se

introducirá la consulta necesaria para calcular la descripción. Debido a que en este punto no se conocen los

campos con los que tiene que enlazar de la tabla del programa hay que utilizar variables entre los comodines

{}.

Ejemplo: (SELECT f.descripcion FROM crmfamilias_lin f WHERE f.codigo={codigo_estad4} AND
f.numero=4 AND f.tipo='X' AND f.empresa={empresa})

En el programa hay que enlazar las variables {codigo_estad4} y {empresa} con los campos correspondiente,

por ejemplo “crmexpedientes_cab.codigo_estad4” y “crmexpedientes_cab.empresa”. La forma de realizar

este enlace se explica en el apartado Campos de visualización de descripciones.

Listas de valores con valores estáticos

Se pueden crear listas de valores que lleven los registros a mostrar incorporados en la propia lista, para lelo,

hay que la check "Utilizar Valores Fijos" y aparecerá una pestaña donde indicar los valores posibles de la

lista de valores para cada una de sus columnas.

En este tipo de lista de valores no se podrá modificar la consulta SQL ni la Cláusula Where, para ello esos

campos se deshabilitan.

29

Listas de Valores por grupos.

Son un tipo de listas de valores que muestran los registros en grupos de 9 en 9 ó de 5 en cinco y se puede

seleccionar el registro que se quiere pulsando un número entre 1 y 9 ó 1 y 5 dependiendo del tipo. Ejemplo:

Para activarlas hay que meter en el fuente el componente “LISTA_VALORES_GRUPO” de la librería de

objetos y en el mantenimiento de programas o programas personalizados indicar el tipo de lista de valores

por grupo en el desplegable “Tipo Lista Valores” en la pestaña “Campo”.

Listas de valores en modo Entrada Consulta

Cuando se está en el modo de entrada consulta de un bloque y se lanza la lista de valores únicamente se

está aplicando la cláusula where definida en la lista de valores siendo ignorada la where indicada en el

campo. Esto es debido a que en modo entrada consulta no hay ningún tipo de validación y por lo tanto se

puede ir a un campo en dónde la where filtra por campos anteriores y al estar estos a NULL nunca mostraría

nada.

Se puede desactivar a nivel de empresa / usuario

30

También se puede deshabilitar a nivel de lista de valores:

Dónde:

• Según Usuario / Empresa: Asumirá la parametrización por Usuario / Empresa.

• Sí: Se permite siempre independientemente de lo que esté parametrizado por Usuario / Empresa.

• No: Nunca se permite, independientemente de lo que esté parametrizado por Usuario / Empresa.

También a nivel de campo se puede indicar la cláusula where a aplicar en el caso de estar en modo entrada

consulta. En esta cláusula where ya se podría controlar si los campos anteriores tienen valor o no para filtrar

por ellos o no según se quiera. Si se filtra por un bloque padre no hay necesidad de hacer ese tipo de control

ya que Forms entra en modo entrada consulta por bloque y no a nivel de programa completo. Por ejemplo,

en el campo TIPO_PEDIDO del programa PEDIDOS se podría meter la siguiente where: ":where_lov AND

(organizacion_comercial = :b1.organizacion_comercial OR :b1.organizacion_comercial IS NULL)" de

forma que si el usuario indicó una organización comercial se filtrará por ella y en caso de que vaya

directamente al campo tipo de pedido se mostrarán todos los tipos de pedido independientemente de la

organización comercial a la que pertenezcan.

31

Funciones para gestión de la Lista de Valores

Todas estas funciones están implementadas en el paquete LV

• LV.ACTIVA(<lista de valores>, <ejecutar consulta> [,cláusula where], [consulta sql]): Se

llama cada vez que se llega a un campo con lista de valores, para habilitar el botón y el menú

correspondiente. En este paso ya se indica la lista de valores asociada al campo, si se ejecuta

automáticamente consulta al ejecutarla o si tiene una cláusula WHERE específica.

o <lista de valores>: Código de la lista de valores.

o <ejecutar consulta>: Hay dos opciones posibles:

▪ S: Cuando se lanza la lista de valores se ejecuta consulta automáticamente.

▪ N: No se ejecuta la consulta y se queda en modo de entrada consulta.

o [cláusula WHERE]: Este parámetro es opcional, si no se especifica se asume que dejamos

que la lista de valores use la cláusula WHERE por defecto.

o [Consulta sql]: Este parámetro también es opcional, si no se especifica asume que

dejamos la sql que tiene la lista de valores.

• LV.DESACTIVA: Deshabilita opción de menú, iconos, ...

• LV.LLAMADA: Ejecuta la lista de valores, configura la ventana con los campos necesarios,

construye la sentencia SQL, se la asigna al bloque, ...

• LV.ROW_ID: Si el usuario seleccionó una fila esta función nos devuelve el rowid de la fila

seleccionada, si el usuario canceló la lista de valores devolverá NULL.

• LV.VIENE_DE_LISTA: Devolverá un dato de tipo BOLEAN, con el valor TRUE si desde

que entramos en el campo se ha ejecutado la lista de valores, en caso contrario devolverá

FALSE.

• LV.ESTABLECER_BOTON_LISTA: La llamada a este procedimiento es opcional. Ver

“Indicar el botón de llamada a la lista de valores”.

Indicar el botón de llamada a la lista de valores

Hay casos, como por ejemplo en ventanas flotantes, en los que el botón que tiene que pulsar el usuario es

un botón que se encuentra en la ventana flotante en vez del botón de la botonera principal.

Para indicar el botón que ejecutará la lista de valores se usará

LV.ESTABLECER_BOTON_LISTA('<bloque>.<botón>); antes de la llamada a

DISPSTD.WHEN_NEW_ITEM_INSTANCE, por lo que en los bloques en que suceda este caso habrá

que personalizar el disparador WHEN-NEW-ITEM-INSTANCE.

Ejemplo: Si tenemos un botón que lanza la lista de valores en el bloque B8 y el nombre del botón es

LISTA_VALORES, personalizaremos en el bloque B8 el disparador WHEN-NEW-ITEM-INSTANCE con

el siguiente código:

LV.ESTABLECER_BOTON_LISTA('B8.LISTA_VALORES');

DISPSTD.WHEN_NEW_ITEM_INSTANCE;

Un botón que se utilice para llamar a una lista de valores debe tener las siguientes propiedades:

• Activado: No

• Teclado de Navegación: No

• Navegación del Ratón: No

Disparadores

Solo se deberán de usar la llamada fija a la lista de valores en el programa en casos muy excepcionales,

donde por cualquier motivo no sea efectiva la definición para el campo de la lista de valores en el

mantenimiento de programas.

Trataremos de definir todos los disparadores a nivel de bloque en vez de a nivel de ítem, y usaremos la

variable :system.trigger_item para saber a qué ítem nos estamos refiriendo. Esto nos da muchas más

posibilidades para poder añadir código genérico y facilita enormemente la depuración.

32

WHEN_NEW_ITEM_INSTANCE

Para indicar de forma fija la lista de valores que va a usar un ítem usaremos el procedimiento LV.ACTIVA

(Se puede ver la definición en la sección Funciones para gestión de la lista de valores). Siempre que sea

posible definir la lista de valores en el mantenimiento de programas se indicará ahí la lista de valores a usar.

DISPSTD.WHEN_NEW_ITEM_INSTANCE;

IF :system.trigger_item = 'CAMPOS.ESTADO' THEN

 LV.ACTIVA('ESTADOS', 'S');

ELSIF :system.trigger_item = 'CAMPOS.PROVINCIA THEN

 LV.ACTIVA('PROVINCIAS', 'S', 'estado = campos.estado');

END IF;

ATENCIÓN: Nunca deberíamos de cerrar la posibilidad de que para campos que no tengan actualmente

lista de valores se le pueda asignar una desde el mantenimiento de programas, para eso es imprescindible

ejecutar el procedimiento estándar DISPSTD.WHEN_NEW_ITEM_INSTANCE. Deberemos ejecutarlo

antes que los LV.ACTIVA para que el disparador estándar no cambie la activación de la lista de valores.

WHEN-VALIDATE-ITEM

DISPSTD.WHEN_VALIDATE_ITEM;

IF :system.trigger_item = 'CAMPOS.ESTADO' THEN

 IF :campos.estado IS NOT NULL THEN

 BEGIN

 SELECT nombre

 INTO :campos.d_estado

 FROM estados

 WHERE codigo = :campos.estado;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 :campos.d_estado := NULL;

 MSG.MENSAJE('CAMPO', 'NO_VALID');

 END;

 ELSE

 :campos.d_estado := NULL;

 END IF;

END IF;

Al igual que en WHEN_NEW_ITEM_INSTANCE no se debería de anular la posibilidad de usar el

mantenimiento de programas para realizar la validación de otros campos. Podríamos desde el

mantenimiento de programas asignar la lista de valores, pero desactivar la opción de validar desde lista y

dejar fijo el código de validación en el fuente del programa. También se podría usar la validación de la lista

de valores y luego en el código fuente del programa añadir una restricción a mayores, etc.

33

Listas de valores de Multiselección

Las listas de valores de multiselección se diferencian de las listas de valores normales en que el usuario

puede seleccionar varios registros de la lista. En este tipo de lista de valores aparece un campo de tipo check

para que el usuario marque las filas que quiere seleccionar.

Para activar la multiselección hay que indicar en la pestaña Campo en el campo “Tipo Lista Valores” una

de estas opciones:

• Multiselección:

• Multiselección Totalizada: Se diferencia de la anterior de que las columnas numéricas se les

añade un total en donde se suman los registros que ha seleccionado el usuario.

Cuando se indica en el campo que es una lista de valores de multiselección aparecen 2 campos nuevos:

• Separador: Carácter que se utiliza para separar los valores, si no se indica nada se asume “,”

(coma). En caso de poner el código de separador R, asumirá que tiene que devolver el valor

en registros nuevos, es decir, en vez de concatenarlos en el campo que se llama a la lista de

valores, por cada valor seleccionado creará un registro nuevo. Es importante que en caso de

usar esta opción el campo que tiene la lista de valores sea el único campo obligatorio y si hay

campos obligatorios se carguen por código PL/SQL de validación de registro o del campo que

tiene la lista de valores, en caso de dar un error de validación se cancelará en ese momento y

no se crearán más registros.

• Devolver Valores: Si se activa, cuando el usuario valida la lista de valores los códigos de los

registros seleccionados se devuelven concatenados y separados por el carácter indicado en

“Separador”.

34

Observaciones para el caso de activar la lista de valores en el mantenimiento de programas:

• Si el campo que llama a la lista de valores de multiselección, es validado desde lista de valores,

los valores introducidos manualmente también serán validados y únicamente, si todos los

valores son válidos se deja salir del campo.

• Si se valida desde lista de valores y el campo tiene asociado un campo descripción “D_XXX”

en ese campo se meterán las descripciones de los valores y se utilizará el mismo separador.

• Si se valida desde lista de valores al llamar a la lista de valores desde un campo que ya tiene

algún valor se marcarán las checks de los registros correspondientes.

• No se va a permitir seleccionar más valores de los que pueden entrar en el campo que llama a

la lista de valores.

Las listas de valores también se pueden gestionar por código dentro del programa para ello se dispone de

las siguientes funciones y procedimientos:

Procedimiento para activar una lista de multiselección.

• LV.ACTIVAR_MULTISELECCION: Modifica el funcionamiento de la próxima lista de

valores que se active para que esta sea de multiselección. Esta llamada se pondrá antes de

DISPSTD.WHEN_NEW_ITEM_INSTANCE.

Funciones para procesar los registros seleccionados por el usuario.

• LV.PRIMER_REG_MULTISELECCION: Devuelve el rowid del primer registro

seleccionado por el usuario, si no ha seleccionado ninguno devolverá NULL.

• LV.SIGUIENTE_REG_MULTISELECCION: Devuelve el rowid del siguiente registro

seleccionado por el usuario al anterior que nos ha devuelto esta función o la función

PRIMER_REG_MULTISELECCION. Si ya no quedan más registros devolverá NULL.

• LV.BORRAR_MULTISELECCION: Borra toda la selección realizada por el usuario.

• LV.CAMPO_LOV: Devuelve el campo desde el que se ha llamado la lista de valores.

35

Ejemplo de lista de valores de multiselección.

• WHEN-NEW-ITEM-INSTANCE: Hay dos formas de indicar que un campo tiene lista de

valores de multiselección

o Activamos la lista de valores en el código del programa, por ejemplo.

DISPSTD.WHEN_NEW_ITEM_INSTANCE.

IF :system.trigger_item = 'PRUEBA.CODIGO' THEN

 LV.ACTIVAR_MULTISELECCION;

 LV.ACTIVA('ESTADOS', 'S');

END IF;

o La lista de valores se establece en el mantenimiento de programas (siempre que se pueda

trataremos de usar este método), en el código solo indicamos que es de multiselección,

por ejemplo:

DISPSTD.WHEN_NEW_ITEM_INSTANCE.

IF :system.trigger_item = 'PRUEBA.CODIGO' THEN

 LV.ACTIVAR_MULTISELECCION;

END IF;

• WHEN-NEW-RECORD-INSTANCE: Procesamos la selección del usuario, sólo cuando se

viene de la lista de valores del campo sin ser cancelada.

DECLARE

 v_rowid VARCHAR2(30);

BEGIN

 DISPSTD.WHEN_NEW_RECORD_INSTANCE;

 IF lv.viene_de_lista AND lv.row_id IS NOT NULL

 AND lv.campo_lov = 'PRUEBA.CODIGO' THEN

 v_rowid := LV.PRIMER_REG_MULTISELECCION;

 WHILE v_rowid IS NOT NULL LOOP

 SELECT codigo

 INTO :prueba.codigo

 FROM estados

 WHERE rowid = v_rowid;

 NEXT_RECORD;

 v_rowid := LV.SIGUIENTE_REG_MULTISELECCION;

 END LOOP;

 LV.BORRAR_MULTISELECCION;

 END IF;

END;

36

Programa para mantener programas !!!!!!

Aunque parezca un juego de palabras es la mejor descripción para el Mantenimiento de Programas del

E.R.P.

Desde este programa se pueden realizar operaciones que pueden modificar el comportamiento de los

programas sin necesidad de modificar ni compilar, simplemente saliendo y volviendo a entrar en el

programa modificado ya se asumen los nuevos cambios.

NOTA: No es necesario introducir todos los campos de un bloque, únicamente aquellos que tengan la

necesidad de activar alguna funcionalidad en particular.

El valor de la check “Plantillas” a nivel de programa, “Campo Código” y el apartado Específicos Programas

Dinámicos de cada campo, son para uso exclusivo de programas que sean dinámicos (basados en plantillas).

Operaciones que se pueden realizar a nivel de programa

• Tipo: Define la tipología del programa:

o Consulta: Es un programa de consulta, por tanto, algunas listas de valores cambian el

comportamiento de los registros a mostrar. Por ejemplo, en una consulta de artículos se

podrán ver artículos inactivos, mientras que si es un movimiento de almacén los artículos

inactivos no pueden visualizarse.

o Plug-In: El programa está pensado exclusivamente para ser utilizado como plug-in, por

tanto, no es necesario que se encuentre en el menú del usuario para ser utilizado.

o Web: Programa de movilidad.

o Ejecuta Metadatos: No necesita ejecutable compilado para ejecutarse, con la

información que se encuentra definida a nivel de metadatos es suficiente para ser

ejecutado.

o Plug-In Ejecuta Metadatos: Igual que “Ejecuta Metadatos” y no se requiere una entrada

en el menú para que el usuario pueda ejecutarlo.

o Filtro Metadatos: Es un programa que no está asociado a tabla y no necesita ejecutable.

Este programa permite pedir datos al usuario por pantalla para luego se utilizados por

algún proceso.

o Plug-In Filtro Ejecuta Metadatos: Igual que “Filtro Metadatos” y no se requiere una

entrada en el menú para que el usuario pueda ejecutarlo.

37

• Código PL/SQL de Inicialización: Sólo se ejecuta al entrar en el programa, es interesante

para establecer propiedades que no se pueden cambiar de otra forma.

• Código PL/SQL de Finalización: Sólo se ejecuta al salir del programa.

• Permitir Informes por...: Mediante estas checks se puede configurar el destino que puede

tomar un informe, si se deshabilitan todas al entrar en el programa también se deshabilita el

botón de impresión.

• Selección de Directorio en Informes: En la pantalla de selección de destino de la impresión,

si el usuario indica que desea el informe en archivo, el usuario puede indicar la ruta + el

nombre del archivo, si se activa esta check quiere decir que el nombre de archivo se genera

de forma automática dentro del programa, por lo tanto, el usuario únicamente debe de indicar

el directorio en donde quiere obtener los archivos.

• Grabar automáticamente al salir: Si se activa, cuando hay cambios que están pendientes de

ser grabados, al pulsar el botón de salir esos cambios se graban automáticamente sin preguntar

al usuario.

• Ejecutar Consulta al Entrar: Si se activa, en le primer bloque navegable del programa se

ejecutará consulta al entrar en él por primera vez. Esa consulta se ejecutará siempre y cuando

no se hubiese ejecutado ya consulta por la lógica del programa en el disparador INICIO y que

el bloque tenga la propiedad de QUERY_ALLOWED a TRUE.

• Icono: Cuando el programa se utiliza como plug-in de otro se propone este icono para usarlo

como icono del plug-in.

• Selección Manual de Plantilla Inicial: Únicamente es visible cuando el programa es

“dinámico”. Permite indicar que al entrar en el programa se debe de solicitar al usuario la

plantilla a usar en vez de aplicar de forma automática la última plantilla que seleccionó el

usuario.

• Código PL/SQL de grabación: Este código se ejecuta cuando el usuario graba o sale del

programa grabando las modificaciones. No se ejecuta por cada registro, se ejecuta por cada

grabación, por tanto, si queremos que el usuario grabe por registro para que se ejecute este

código hay que usarlo en conjunto con el bloqueo de salida hasta grabar a nivel de bloque.

• Código PL/SQL Botón Impresión: Se ejecuta cuando el usuario pulsa sobre el botón de

imprimir, y se puede indicar en qué punto exacto se ejecuta en la lista “Punto ejecución

PL/SQL Botón Impresión”:

o Antes de navegar a la pantalla de Impresión: Es lo primero que ejecuta, antes de ir a

la pantalla de filtros de informe, de esta forma se podría anular esa pantalla y llamar a un

plug-in con otro frontal de informes distinto.

o Después de Navegar a la pantalla de Impresión: Se ejecuta después de mostrar la

pantalla de filtros de informes, después de poner los valores por defecto de destino,

impresora, ..., por lo que desde el código PL/SQL se pueden alterar.

o Antes y Después de Navegar a la pantalla de Impresión: Se ejecuta dos veces, una

antes de navegar y otra después, si se quiere que haga cosas distintas se puede usar la

variable :system.cursor_block, después de navegar contendrá el valor BREPORT.

Si el programa no tiene informe y se activa mediante la check de Forzar Botón de Impresión

el especificar que se ejecute Antes o Después de Navegar va a dar el mismo resultado ya que

en ningún momento va a hacer esa navegación. Si se especifica que se ejecute Antes y Después

se va a ejecutar dos veces.

• Código PL/SQL para antes de ejecución del informe: Se ejecuta cuando el usuario pulsa el

botón de imprimir en la pantalla de filtros del informe, una vez seleccionado el destino,

impresora, ... y se ejecuta justo antes de hacer la llamada al report, por lo que se podría usar

para hacer una carga de una tabla temporal, modificar la impresora por la que se va imprimir

o alterar el informe que se va a imprimir por ejemplo. Si se especifica prevalecerá sobre el

código PL/SQL que tenga el usuario o la empresa.

38

Se puede establecer que se ejecute cuando el usuario selecciona un determinado destino,

mediante los list-item que tiene debajo (Al ir a Pantalla, Impresora, Archivo, eMail, Fax y

Gestión Documental) y tienen los siguientes valores:

o Usuario: Se ejecuta dependiendo de la parametrización del usuario en “Personalización

de Estética” y si no tiene registro ahí según la parametrización de “Personalización de

Estética por Empresa”, en caso de no haber tampoco registro se asume que Si se ejecuta.

o Sí: Se ejecuta independientemente de si el usuario/empresa tiene que no se ejecuta.

o No: No se ejecuta independientemente de si el usuario/empresa tiene que no se ejecuta.

Como particularidades de este código PL/SQL es que se pueden leer las siguientes variables:

o PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('IMP_INFORME'):

Devuelve el nombre del informe que se va a ejecutar.

o PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('IMP_DESNAME'):

Devuelve a donde se enviará el informe, en caso de que el destino sea impresora,

devolverá el nombre de la impresora a la que se envía, en caso de ser algún tipo de archivo

devolverá el nombre del archivo que se va a generar con la ruta completa.

o PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('IMP_DESTINO_EXCE

L'): Si se envía a Excel indica el nombre de archivo con la ruta completa que se va a

generar.

o PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('IMP_REPORTS60_TM

P'): Valor de la variable REPORTS60_TMP del libra6.ini.

o PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('IMP_DISPOSITIVO'):

Dispositivo de salida del informe, posibles valores SCREEN, PRINTER, FILE, MAIL,

FAX, GESTODOC.

Otras particularidades de este código PL/SQL es que se puede establecer la impresora o

el nombre del archivo a generar (dependiendo del destino del informe) estableciendo

PKPANTALLAS.SET_VARIABLE_ENV('IMP_DESNAME', 'valor');. También se

puede cambiar el informe a ejecutar estableciendo

PKPANTALLAS.SET_VARIABLE_ENV('IMP_INFORME', 'valor');

• Código PL/SQL para después de ejecución del informe: Se ejecuta una vez se ha finalizado

la ejecución del informe, y al igual que en el en “Código PL/SQL para antes de Ejecutar

Informe” se puede indicar que se ejecute cuando el destino sea uno en concreto. En este código

es especialmente importante ya que si se va a ejecutar invalida la impresión en segundo plano

en caso de estar activada.

Como particularidades de este código PL/SQL es que se pueden leer las siguientes variables:

o PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('IMP_INFORME'):

Devuelve el nombre del informe ejecutado.

o PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('IMP_DESNAME'):

Devuelve a donde se mandó el informe, en caso de que el destino sea impresora devolverá

el nombre de la impresora a la que se envío, en caso de ser algún tipo de archivo devolverá

el nombre del archivo generado con la ruta completa.

o PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('IMP_DESTINO_EXCE

L'): Si se envía a Excel indica el nombre de archivo con la ruta completa que se generó.

• Grupos de Repetición: Los grupos de repetición permiten definir campos que el usuario

deberá teclear tantas veces como indique el campo “Nº”. Luego a nivel de campo (en la

pestaña campo), a los campos que se quieran incluir en el grupo de repetición hay que cubrir

el campo “Grupo Validación”.

o Código: Código del grupo de repetición.

o Descripción: Descripción del grupo.

o Nº: Número de veces que el usuario tiene que introducir la información para validar el

grupo de repetición.

39

Operaciones que se pueden realizar a nivel de bloque

• Cambiar el origen de datos del bloque para consulta, campo “Consulta”: En este campo

se puede indicar de donde tiene que obtener Oracle los datos para mostrar en el bloque. Puede

ser una tabla o una consulta. En caso de ser una consulta se debe de poner entre paréntesis.

• Cambiar la condición de visualización de registros de un bloque: A los bloques se les

puede añadir una condición a mayores de la que tiene el programa, para ello se cubrirá el

campo Where Inicial de la sección de bloques. La forma en que se introduce la condición al

bloque depende del list-item “Operación con Where Inicial”:

o Añadir: Se añade la condición a la que tenga el programa en el fuente.

o Sustituir: Se ignora la condición que tenga el programa en el fuente y se utiliza

únicamente la del mantenimiento de programas.

• Cambiar la ordenación de un bloque: A los bloques se les puede modificar el tipo de

ordenación que realiza, para ello se cubrirá el campo Ordenación Inicial. NOTA: Esta

ordenación sustituye a la que tenga el programa. Si dentro del programa se vuelve a asignar

la propiedad ORDER_BY del bloque se perderá esta asignación.

• Tabla Relaciones: Por defecto se controla el borrado de registros o modificación de campos

clave primaria en base a las relaciones asociadas a la tabla del bloque, pero puede haber casos

donde el bloque está asociado a una vista, pero el control de las relaciones interesa gestionarlas

por las definidas en una tabla, en este caso se puede indicar en este campo la tabla con la que

se tienen que verificar las relaciones. Esta tabla también será utilizada para gestionar las

auditorías de cambios. Al introducir una tabla en este campo se puede configurar los permisos

de visualización de esas auditorías, por lo general lo más adecuado es dejar el valor por defecto

“Según Usuario”.

• Enviar a Excel el contenido del bloque: Si se activa en el bloque la opción “Excel”, cuando

el cursor entre en ese bloque se activa en el menú una opción para enviar el contenido

directamente a Excel.

o Según Usuario: Solo se activará esta posibilidad si en la personalización del usuario tiene

activado el envío a hoja de cálculo.

o Nunca: No se permite volcar el contenido de bloque a hoja de cálculo

independientemente de la configuración del usuario.

o Siempre: Se permite el volcado a hoja de cálculo independientemente de la configuración

del usuario.

• Selección de campos a enviar a Excel: Permite configurar el comportamiento que tendrá

cuando el usuario pulse el botón de envío a hoja de cálculo, pudiéndose indicar que no se

soliciten los campos a enviar a hoja de cálculo, de forma que se envían todos.

• Código PL/SQL en sustitución de la generación XLS genérica: Este código PL/SQL, en el

caso de introducirse, se ejecutará cuando el usuario pulse sobre el botón de envío a hoja de

cálculo, pudiéndose meter las llamadas necesarias a PKXLSBD para realizar la hoja de cálculo

de forma totalmente específica para ese bloque.

• Código PL/SQL de validación: Código PL/SQL que se ejecuta cuando se valida un registro

completo.

40

• Código PL/SQL de Post Inserción: Se ejecuta después de haberse insertado el registro en la

base de datos.

• Código PL/SQL de Post Actualización: Se ejecuta después de haberse modificado el registro

en la base de datos.

• Código PL/SQL de Pre borrado: Se ejecuta cuando se intenta borrar un registro. Si el

resultado de la ejecución termina con :p_parar_ejecucion con el valor 'S' se evita el borrado

del registro.

• Código PL/SQL de Post Borrado: Se ejecuta una vez se ha borrado el registro.

• Código PL/SQL de inicialización: Se ejecuta cada vez que se crea un registro, de esta forma

se puede asignar valores por defecto en base a determinadas condiciones. Se debería utilizar

siempre y cuando el valor por defecto no se pueda asignar usando el campo “Valor por

defecto”, ya que el uso del campo “Valor por defecto” no hace intervenir a la base de datos.

• Código PL/SQL de Entrada en Bloque: Se ejecuta cuando el cursor entra en el bloque.

• Código PL/SQL de Entrada en Registro: Se ejecuta cada vez que se entra en un registro

nuevo o se cambia de registro en el bloque.

• Código PL/SQL – Antes de consultar registros: Se ejecuta antes de realizar la consulta que

realiza el bloque para rellenarlo de información.

• Código PL/SQL de Consulta de Registro: Código que se ejecuta por cada registro que se

consulta de la base de datos. IMPORTANTE: Al ejecutarse por cada registro que se trae de

la base de datos y al ejecutarse el código PL/SQL en la base de datos se va a incrementar el

tráfico de red ralentizando la consulta.

• Bloquear salida hasta grabar: Si se activa la check y el usuario modifica algo, este bloque

va a bloquear la salida del registro en que se encuentra el usuario hasta que no grabe o no lo

borre o borre el registro de un bloque padre.

Por ejemplo, si lo activamos en la entrada de pedidos en el bloque B1 (cabecera), en cuanto

el usuario modifique algo no se le va a dejar salir del pedido mientras no lo grabe o no lo

borre.

Si lo activamos para un bloque que tiene padres, por ejemplo, líneas de pedido, habría que

activarlo también para sus padres ya que si no lo hacemos evitamos que salga de las líneas,

pero puede ir a la cabecera y cambiarla lo que produce un cambio en las líneas.

Si se activa en un bloque multilínea y el usuario intenta salir con el ratón a otro registro se

navega de nuevo al registro en que estaba.

• Prioridad mismo bloque en cambio de pestaña: El funcionamiento normal de cuando el

usuario pulsa en una pestaña es buscar el primer campo navegable de la pestaña de destino,

ese campo podría ser de otro bloque. Si se activa esta check primero mira si en la pestaña de

destino hay un campo navegable del bloque en que se encuentra el cursor, si lo hay va a ese

campo y si no hay busca el primer campo navegable de la pestaña de destino sea del bloque

que sea.

• Mantener campo al cambiar de registro: Si se navega al registro anterior o al registro

siguiente se intentará mantener el cursor en el mismo campo. Si el registro al que se navega

es nuevo se irá al primer campo navegable.

• Confirmar borrado de registro: Si está activado antes de borrar un registro se pide

confirmación al usuario, si no está activado se borra directamente.

• Modo Exportación a Hoja de Cálculo:

o Automático: Dependiendo de los campos que desea exportar el usuario a Hoja de

Cálculo, el entorno de Libra puede determinar que el mejor camino para realizarlo es

volver a ejecutar la misma consulta que hizo el bloque para rellenarse.

41

o Forzar recorrer bloque: Esta opción le indica al entorno que debe de recorrer el bloque

para obtener los datos para generar la hoja de cálculo en vez de realizar otra consulta

contra la base de datos.

o Forzar conexión directa: Si el bloque no usa tablas temporales y paquetes con variables

de sesión y generalmente el número de registros a exportar va a ser alto, con esta opción

pude mejorar la velocidad de exportación.

o Bloquear conexión directa: Debe de utilizarse en el caso de que el bloque esté asociado

a una tabla temporal o que utilice funciones que dependan de variables de sesión.

• Búsqueda Contextual: En Forms 14 indica si se debe de habilitar o no la búsqueda contextual

del bloque.

o Según Usuario: El bloque permite la búsqueda contextual, pero será la parametrización

de grupo empresarial / usuario quien determine si se debe de activar o no.

o Siempre: Independientemente de la configuración del grupo empresarial / usuario el

usuario podrá ejecutar la búsqueda contextual.

o Nunca: Independientemente de la configuración del grupo empresarial / usuario el

usuario no podrá ejecutar la búsqueda contextual.

• Habilitar selección de registros: Esta check únicamente debe de ser activada en caso de

bloques de tipo multiregistro. Permite al usuario a seleccionar con el ratón (mientras mantiene

la tecla Control o Mayúsculas pulsada) varios registros. Una vez seleccionados varios registros

se pueden borrar todos a la vez o lanzar un plug-in que se ejecute sólo para los registros

seleccionados.

• Filtros: Permite configurar el bloque para que gestione dos tipos de filtros:

o Sí – Bloque de Filtro: Se utiliza para indicar que el bloque es donde se introducen los

filtros para luego ejecutar una consulta, al indicar esto el usuario puede grabar los filtros

utilizados para ser recuperados luego de forma fácil.

o Sí – Bloque de Datos: Se mostrará una pestaña anidada donde se pueden definir filtros

que luego podrá seleccionar el usuario durante la ejecución del programa.

Se pueden definir tantos filtros como se quiera, el usuario cuando ejecute el programa y entre

en el bloque va a tener un botón para abrir una ventana en donde indicar el filtro que quiere

aplicar, y si tiene ya aplicado algún filtro una de las opciones será “Limpiar Filtros” para

volver al estado original.

Se puede hacer que según se entre en el programa arranque el bloque con un filtro aplicado,

para ello situamos el cursor en el registro que se quiera que sea inicial y se pulsa en el botón

“Seleccionar como filtro inicial”, para desactivar el filtro inicial se pulsará en el botón “Borrar

filtro inicial”. Un filtro que use variables no podrá ser utilizado como filtro inicial.

• Código: Identificador único del filtro, no será visible por el usuario.

42

• Descripción: Será lo que vea el usuario para identificar el filtro.

• Orden: Orden en que se mostrará al usuario para seleccionar el filtro a aplicar.

• Activo: El usuario solo podrá seleccionar aquellos filtros que tengan la check “Activo”

marcada.

• Acción a realizar sobre el bloque después de aplicar el filtro: Indica que es lo que se debe

de hacer sobre el bloque en el caso de que el usuario aplique un determinado filtro. Las

acciones que se pueden indicar son:

o Ejecutar Consulta: Es lo que se hacía siempre hasta esta versión y consiste en

refrescar la consulta del bloque con el filtro aplicado.

o Ejecutar Consulta y no mantener bloque filtrado: Con esta opción se hace la

consulta según el filtro y se muestran los datos que cumplen la condición, pero el

bloque no queda atado a ese filtro y si el usuario pulsa F7 o usa el botón de ejecutar

consulta verá todos los registros, es decir, es equivalente a la opción "Ejecutar

Consulta" y luego que el usuario vaya a "Limpiar Filtros"

o Limpiar Bloque: Se aplica el filtro y se limpia todos los registros visualizados, el

usuario tendrá que ejecutar consulta para ver los registros.

o Activar Modo de Entrada Consulta: El bloque se queda en modo de entrada

consulta esperando a que el usuario introduzca algún criterio a mayores a aplicar

sobre alguno de los campos.

• Filtro: Será la condición que se añada al bloque, esa condición se añade de la siguiente forma:

AND (<condición>)

En el filtro se pueden utilizar variables que le serán solicitadas al usuario, esas

variables se introducirán directamente en la condición añadiendo : (dos puntos)

delante, por ejemplo, si queremos al usuario un rango de fechas, se podría meter algo

similar a esto: av.empresa = :global.codigo_empresa AND av.fecha_pedido

BETWEEN :p_desde_fecha AND :p_hasta_fecha. En este caso se indica que se

quieren usar las variables :p_desde_fecha y :p_hasta_fecha, a esas variables hay que

indicar la forma en la que se van a solicitar al usuario, para ello hay que pulsar en el

botón “Variables”.

• Código: Identificador de la variable, si en a condición se usó :p_desde_fecha, el código debe

de ser P_DESDE_FECHA.

• Etiqueta: Texto que aparecerá junto al campo al generarse la pantalla de filtros del usuario.

• Lista de Valores: Código de la lista de valores que tendrá el campo del filtro.

• Valor por Defecto: Permite indicar un valor que aparecerá inicialmente al usuario y que podrá

ser modificado.

• Obligatorio: Si se activa no se dejará realizar la consulta mientras el usuario no proporcione

un valor para el filtro.

43

• Cláusula Where a incluir en el filtro si la variable tiene valor: Esta cláusula where

únicamente será añadida cuando el usuario introduce algún valor en la variable y permite

simplificar la consulta, sobre todo cuando la lista de valores des de tipo multiselección. En

principio el contenido del filtro se añadirá al filtro principal añadiendo al final: "AND (+ la

cláusula where de la variable +)", pero puede ser que interese que esa condición sea añadida

a una parte en concreto de la where principal ya podría estar por ejemplo dentro de una

subconsulta, en ese caso en la where principal se añadirá :CODIGO_VARIABLE y en el caso

de que el usuario no cubra ese filtro :CODIGO_VARIABLE se quita y si el usuario cubre el

filtro se reemplaza.

• Cláusula Where Lista de Valores: Filtro para los registros que visualizará la lista de valores.

Este campo está asociado al campo “Lista de valores”. Toda lista de valores puede tener

asociada una cláusula “WHERE” para todos los programas, pero esa “WHERE” quedará

anulada si en este campo se introduce una específica, de forma que se puede llegar a tener

condiciones “WHERE” distintas en cada programa. Es muy recomendable añadir la expresión

“:where_lov” que se reemplazará en tiempo de ejecución por la cláusula where que tenga la

lista de valores, de forma que un cambio de la where en la lista de valores será traslada a todos

los programas. Para hacer referencia en esta cláusula where a otra variable que se pida antes

(que tenga un orden inferior) debe de usarse ":CODIGO_VARIABLE". No debe de usarse el

campo interno usado, por ejemplo "BFILTROS.FILTRO_ALFA2" ya que si por algún motivo

se cambia el orden o se añaden nuevas variables ese campo va a cambiar.

• Tipo Valor: Permite indicar si el dato es “Alfanumérico”, “Numérico”, “Fecha” o de tipo

“Check”.

• Ejecutar Consulta al lanzar la Lista de Valores: Si se indica “Lista de Valores” y se

desactiva esta check al lanzar la lista de valores se iniciará en modo de entrada consulta, es

decir, se inicia esperando que el usuario proporcione un filtro inicial.

• Validar desde Lista de Valores: Si se indica “Lista de Valores” y esta check está activa,

únicamente se podrá introducir un valor de los que se puedan visualizar en la lista de valores.

• Tipo L.V.: Si el filtro tiene lista de valores permite indicar el tipo de lista de valores a utilizar.

Si se indica un tipo de multiselección en la cláusula where del filtro hay que usar el operador

IN o NOT IN. Si se selecciona la opción "Rellenar List-Item" el campo se mostrará en forma

de List-Item con los valores que devuelva la lista de valores cargados.

Operaciones que se pueden realizar a nivel de campo

• Cambiar etiquetas de campos: En los programas, sean dinámicos o no, se puede modificar el

texto de las etiquetas de los campos para posibilitar la traducción del E.R.P a otros idiomas y

permitir en una instalación que estén usuarios con las pantallas en un idioma y otros usuarios con

otro idioma. Los pasos que realizan los programas para obtener la etiqueta de un campo son los

siguiente:

o Programas dinámicos:

▪ Busca la etiqueta en la personalización por idioma de los campos para la

plantilla.

▪ Si la etiqueta no está personalizada para la plantilla en el idioma del usuario se

busca igual que en los programas no dinámicos.

o Programas no dinámicos:

▪ Buscar la etiqueta para el campo en el idioma del usuario. Sección Etiquetas por

Idioma.

▪ Si no tiene etiqueta en el idioma del usuario usa la etiqueta Estándar.

▪ Si no tiene ninguna de las anteriores se mostrará la introducida en el código

fuente del programa.

• Habilitar hipervínculos a otros programas: Si en el campo Llamar programa introducimos el

nombre del fichero de un programa, cuando un usuario que tenga permisos para entrar en ese

programa y se posicione en el campo se habilitará el botón de llamada directa y podrá navegar al

44

programa especificado. Si se especifica en este campo el programa a llamar prevalecerá sobre el

programa que tenga asociado la lista de valores.

• Calculadora: Activando o desactivando la check del campo Calculadora haremos que cuando el

usuario se encuentre en ese campo y pulsa sobre la lista de valores se abrirá una calculadora. Solo

se debería de activar en campos numéricos.

• Calendario: Indicando “Sí” en cualquiera de las dos modalidades existentes, cuando el usuario se

encuentre en ese campo y pulsa sobre la lista de valores se abrirá un calendario.

El indicar que un campo tiene calendario desde el mantenimiento de programas lleva asociado que

la validación se realizará como una fecha.

o Sí - Proponer fecha de trabajo si es obligatorio: Si el campo es obligatorio y el usuario

intenta dejarlo en blanco se cubrirá de forma automática con la fecha de trabajo

(:global.fecha_trabajo).

o Sí - Sin proponer fecha de trabajo: Si el campo es obligatorio y el usuario intenta

dejarlo en blanco le obligará a introducir un valor manualmente.

• Cambiar / Asignar lista de valores asociada a un campo: Si en el campo Lista de Valores

introducimos el código de una lista de valores, se activará la posibilidad de usar la lista de valores

especificada en ese campo.

• Ejecutar Consulta al Lanzar la L.V.: Si está activada la check, indicamos que cada vez que se

lance la lista de valores se ejecutará automáticamente consulta de la misma, en caso contrario se

lanzará la lista de valores y se quedará a la espera de que el usuario introduzca un filtro y pulse

F8.

• Cláusula WHERE Lista de Valores: La lista de valores puede tener asociada una cláusula

WHERE para todos los programas, pero esa WHERE quedará anulada si en este campo

introducimos una específica para el campo. Si se cubre este campo, esta where prevalecerá sobre

la where especificada en la lista de valores. Si dentro de la where ponemos el identificador

:where_lov, este será sustituido por la cláusula where original de la lista de valores, con lo que se

logra una especie de herencia. :where_lov2 será sustituido por la cláusula where 2 definida en la

lista de valores, :where_lovv será sustituido por la cláusula where de validación definida en la

lista de valores. Ejemplo:

o Where lista de valores: empresa=:global.codigo_empresa

o Where programa: tabla=1 AND :where_lov

o Resultado: tabla=1 AND empresa=:global.codigo_empresa

NOTA: Se debería usar siempre que sea posible la herencia de la where de la lista de valores al programa,

para que un cambio en la lista de valores original se propague a la where de todos los programas en donde

se usa.

Se puede gestionar la cláusula where de la lista de valores en tiempo de ejecución al través del resultado de

una función de base de datos. El comportamiento es muy parecido al explicado en el apartado: Listas de

valores con las etiquetas :SF: y :EF:, pero para indicar que la función debe de evaluarse en cada ejecución

vez ve de una única vez al entrar en el programa, se usan las etiquetas :SDF: y :EFD:

Si sólo se utiliza :global.usuario y :global.codigo_empresa, debería de utilizarse :SF: y :EF:, pero si se

necesita alterar la where de la lista de valores según el dato de un campo anterior debe de utilizarse :SFD:

y :EFD:

Ejemplo: Si en el programa PEDIDOS en la where de B1.CLIENTE cambiamos: (:b1.oc_por_actividades = 'N'

OR (codigo_actividad IS NULL OR EXISTS (SELECT 1 FROM org_comer_actividades oca WHERE oca.codigo_actividad =

clientes.codigo_actividad AND oca.org_comercial = :b1.organizacion_comercial AND oca.codigo_empresa =

:global.codigo_empresa))) por :SFD:PKVALIDAR_ENTIDADES.CW_VALIDA_ACTIVIDADES(:global.usuario,

:global.codigo_empresa, :b1.organizacion_comercial, 'clientes.codigo_actividad', ':b1.organizacion_comercial'):EFD:

Al ejecutar la lista de valores o la validación del cliente, únicamente hará el AND EXISTS sobre

ORG_COMER_ACTIVIDADES si la organización comercial tiene actividades.

45

• Validar desde L.V.: Este desplegable puede tener los siguientes valores:

o Sí: Fuerza a que cuando se introduzca un dato manualmente en el campo se valide que

ese código está en los registros que se mostrarían en la lista de valores.

o No: Permite introducir cualquier valor. No realiza ninguna validación contra la lista de

valores.

o Sí – Llamar programa asociado: Cuando se introduce manualmente un dato que no se

puede validar contra la lista de valores y la lista de valores tiene asociado un programa

se abrirá el programa automáticamente para que el usuario pueda crear el registro.

o Sí – Forzar Lista de Valores Contextual: Indica que en la validación del campo siempre

se lance la lista de valores, incluso aunque el valor introducido por el usuario en el campo

únicamente devuelva un registro. Si se quiere forzar que la validación siempre sea a través

de la lista de valores se deberá activar también la check “Bloquear validación sin pulsar

INTRO / TABULACIÓN”.

• Forzar Filtro al Ejecutar Consulta: Cuando se activa, en el bloque no se permitirá ejecutar

consulta sin antes introducir un valor de filtro de este campo, es decir, si el usuario pulsa F7,

mientras no introduzca un valor para filtrar en el campo no se le permitirá ejecutar consulta con

F8. NOTA: Para que funcione totalmente esta opción es necesario que a nivel de bloque en el

fuente tenga el disparador KEY-EXEQRY con la llamada a DISPSTD.KEY_EXEQRY como

mínimo.

• Desactivar búsqueda contextual (En opciones avanzadas): Hay campos donde la búsqueda

contextual puede ser incompatible con ellos, ya que puede haber varios registros válidos y al hacer

la validación va a estar saltando la lista de valores en bucle mientras no se salga del campo con el

ratón. Ver apartado búsqueda contextual para más información.

• Bloquear salto de campo en L.V.: Si se activa la check cuando se selecciona un registro de la

lista de valores el cursor se mantendrá en el campo que ha llamado a la lista de valores, si está

desmarcado saltará al siguiente campo navegable.

• Tipo L.V.: Permite indicar el formato que va a tener la lista de valores:

o Normal: Lista de valores simple.

o Grupos 9 Registros: Ver apartado Listas de Valores por Grupos.

o Grupos 5 Registros: Ver apartado Listas de Valores por Grupos.

o Multiselección: Ver apartado Listas de Valores de Multiselección.

o Multiselección Totalizada: Ver apartado Listas de Valores de Multiselección.

o Rellenar List-Item: Se usa en campos de tipo List-Item, para que sean rellenados al

iniciarse el programa con los valores proporcionados por la lista de valores.

o Selección Icono: Al pulsar sobre el botón de lista de valores al usuario le aparecerá una

ventana mostrando todos los iconos que van incluidos en el estándar de Libra. Al indicar

este tipo, no hace falta indicar nada en el campo "Lista de Valores".

o Selección Color: Al pulsar sobre el botón de lista de valores al usuario se le abrirá una

ventana en la que puede seleccionar un color de forma visual. El valor que retorna es el

RGB en formato hexadecimal.

• L.V. Carga Registro Único: Se puede indicar que un campo asuma de forma automática el valor

de la lista de valores en el caso de que la lista de valores sólo devuelve un único registro. Se puede

indicar el punto en donde debe de realizarse la carga:

o No: No se comprueba si la lista de valores solo tiene un registro válido.

o Sí - Cargar al entrar en campo: Se hace en el WHEN-NEW-ITEM-INSTANCE, en los

registros nuevos, al entrar en un campo que está vacío y tiene activado este parámetro, se

realiza la comprobación, si sólo hay un registro se utiliza y se salta al siguiente campo.

Esta opción marca el registro como inicializado, por lo que no es una buena opción para

el primer campo del registro.

o Sí - Cargar al inicializar el registro: Se hace en WHEN-CREATE-RECORD. Es

especialmente útil para inicializar el primer campo del registro o aquellos campos que no

dependen en absoluto de valores de campos anteriores.

46

• Obligar: Pone como obligatorio el campo y pone en negrita la descripción del campo.

• Ocultar: Hace invisible el campo.

• Desactivar Modificación: No permite la modificación del campo a los usuarios.

• Desactivar Navegación: Hace que en la navegación normal por teclado no se pase por ese campo,

se podría ir con el ratón.

• Validación Filtro: Si el dato introducido por el usuario existe en la tabla correspondiente pone la

descripción de forma normal, si no existe no carga la descripción, pero deja continuar, esto es útil

cuando tenemos campos DESDE/HASTA y queremos poner desde AAAAAA a ZZZZZZ.

• Desactivar Búsqueda Contextual: Si el usuario tiene marcado que se utilice la búsqueda

contextual y la lista de valores para un mismo código puede tener dos registros válidos entrará en

un bucle en donde el usuario no puede salir de la lista de valores ya que se la vuelve abrir, en ese

caso es necesario desactivar la lista de valores contextual para evitar que suceda esto.

• Independiente de mayúsculas / minúsculas: Si se activa para un campo, cuando se haga una

búsqueda en ese campo con entrada / ejecución consulta hará la búsqueda independientemente de

que en la tabla esté almacenado en mayúsculas / minúsculas e independientemente de que el patrón

de búsqueda esté en mayúsculas o minúsculas.

• Mayúsculas / Minúsculas:

o Si está en blanco no hace nada, lo que tenga el programa es lo que vale.

o Forzar Mayúsculas: Obliga a que ese campo todo lo que se introduzca esté en

mayúsculas.

o Forzar Mayúsculas sin Espacios: El valor introducido se convierte en mayúsculas, y si

el campo contiene algún espacio, no será validado.

o Forzar Minúsculas: Obliga a que ese campo todo lo que se introduzca esté en

minúsculas.

o Forzar primera letra Mayúscula: Lo que introduzca el usuario será cambiado a

minúsculas y la primera letra de cada palabra se pondrá en mayúsculas.

o Forzar Mayúsculas y Minúsculas: Obliga a que ese campo se pueda meter tanto

mayúsculas o minúsculas, se diferencia de la primera opción en que en el programa puede

estar puesto que se fuerzan mayúsculas y de esta forma se permiten tanto mayúsculas

como minúsculas´

• Etiqueta Botón: Se utiliza para botones y campos de tipo check box. En estos se puede utilizar

junto a la etiqueta estándar o por idioma para el prompt.

• Tooltip: Etiqueta que se muestra al pasar el ratón por encima del campo.

• Indicación: Texto que se muestra en la barra de estado cuando el cursor entra en el campo.

• Etiqueta Excel: Etiqueta que se utilizará para la columna al exportar a hoja de cálculo el contenido

del bloque. En el caso de que no tenga etiqueta se utilizará la etiqueta del prompt y en su defecto

el código del campo.

• Nombre Columna Consulta: Nombre de la consulta que se enviará a la base de datos en vez del

nombre de campo. Para más información ver apartado: Campos de visualización de descripciones.

• Nombre Columna Orden: Si especificamos algo en esta columna cuando el usuario pulse con el

botón derecho sobre el campo e indique que desea orden ascendente o descendente va a ordenar

por lo que esté especificado en este campo. Esto nos permite por ejemplo cuando tenemos una

columna alfanumérica, pero en la instalación han metido valores como estos, 1, 2, 9, 10, 15, el

orden lo va a hacer de forma alfanumérica, va a poner el 15 antes del 9, esto se soluciona poniendo

en este campo: LPAD(campo, 15, '0').

• Descendente (Nombre Columna Orden Descendente): Permite indicar el criterio de ordenación

cuando se ordena de forma descendiente. Si está vacío el criterio que se utiliza es el indicado en

“Nombre Columna Orden” añadiendo DESC al final. Este campo sólo se utiliza si se ha alimentado

también el campo "Nombre Columna Orden"

• Excel: Se puede indicar el comportamiento del campo a la hora de ser exportado a hoja de cálculo.

o Sí: El campo puede ser exportado.

o Sí – Totalizando si es posible: Si el campo es numérico se intentará totalizar.

47

o No: El campo no puede ser exportado.

• Campo Anterior: Cambia el campo al que salta el cursor cuando pulsamos MAYS+TAB, es decir,

retrocedemos de campo.

• Campo Siguiente: Cambia el campo al que salta el cursor cuando pulsamos INTRO o ENTER.

• Máscara: Permite cambiar la máscara de formato del campo, por ejemplo, si fuese fecha se podría

poner DD/MM/YY. También admite una constante para indicar que se le aplique la máscara de

cantidades con los decimales que se tengan parametrizados en libra para cantidades poniendo CTD

y DF para el formato de fecha que está parametrizado en el libra.env. Si se quiere la máscara de

formato con únicamente 2 dígitos para el año se puede utilizar DFYY.

• Tamaño Máximo: Tamaño máximo en caracteres que va a aceptar el campo. Únicamente se puede

reducir el tamaño sobre el que tenga el fuente, nunca aumentarlo.

• Imagen: Si el campo tiene CLASE_IMAGEN o CLASE_ARCHIVO, se le puede activar que se

realice un escalado de la imagen subida, normalmente para reducir tamaño que ocupe menos. Al

activar la check se abrirá la siguiente ventana en donde indicar las dimensiones.

En esta ventana se indicará las medidas en pixeles a la que se quiere reescalar la imagen, si se

indica Ancho y Alto la imagen será redimensionada a esas medidas pudiendo perder las

proporciones, por lo que se recomienda únicamente indicar una de las unidades, de forma que la

otra será calculada para que la imagen continúe manteniendo las mismas proporciones.

Cuando el campo es CLASE_IMAGEN, para que Libra almacene también la imagen original, el

bloque debe de tener un campo asociado a la tabla que se llame

ID_ARCHIVO_<NOMBRE_CAMPO_IMAGEN>, por ejemplo, si el campo que contiene la foto

se llama IMAGEN_FOTO el campo para almacenar la foto original sin procesar deberá llamarse

ID_ARCHIVO_IMAGEN_FOTO. En el disparador PRE-DELETE del bloque hay que llamar a

pk_blob2bd.borra_archivo en el caso de que el campo ID_ARCHIVO_X tenga valor.

• Permitir Consulta: Permite configurar a nivel de campo si puede ser utilizado para realizar el

filtrado del bloque, tanto con F7/F8 como con la búsqueda contextual del bloqueo. Los valores

posibles son:

o Sí: El campo se puede utilizar tanto para filtrar por F7/F8 y en la búsqueda contextual de

bloque.

o Sólo en modo entrada consulta: Se puede utilizar para filtrar por F7/F8 pero no se

utilizará para filtrar el bloque en la búsqueda contextual.

o No: No se utiliza ni para filtrar por F7/F8 ni en la búsqueda contextual de bloque. Este es

el valor recomendable para indicar a los campos no asociados a tabla para que el usuario

no intente filtrar por ellos, ya que le llevará a confusión ya que no filtrará nada con el

valor introducido.

• Tipo Editor: Permite definir qué editor va a tener el campo, puede ser uno de los siguientes:

o Automático: Es la opción por defecto de todos los campos. Si el campo permite más

de 1.000 caracteres se habilitará el nuevo editor de texto plano y en caso contrario el

editor nativo de Oracle Forms.

o Nativo: Se fuerza a que se utilice el editor nativo de Oracle Forms.

o Texto Plano: Nuevo editor de texto.

o HTML: Editor en formato enriquecido. En el campo se mostrará con las etiquetas

HTML y para poder verlo bien hay que pulsar en el botón del editor o (Ctrl + E).

48

• Posición X: Mueve el campo a la posición x que indiquemos de la pantalla.

• Posición Y: Mueve el campo a la posición y que indiquemos de la pantalla.

• Ancho: Cambia el tamaño de ancho del campo.

• Alto: Cambia el tamaño de alto del campo.

• Borde Prompt: Permite indicar a qué esquina del campo se va a anclar la etiqueta del campo.

• Alineamiento Prompt: Permite indicar el alineamiento de la etiqueta dentro de la esquina a la

que se encuentra anclada.

• Desplazamiento sobre borde: Posición relativa a la situación del campo del texto de la

descripción del campo.

• Desplazamiento sobre alineamiento: Parecido a “Desplazamiento sobre borde” pero en la otra

coordenada.

• Valor por Defecto: Lo que se introduzca lo meterá en el campo de forma inicial cada vez que se

cree un registro nuevo. La check que se encuentra a la izquierda de este campo indica que el valor

introducido debe de ser parseado en tiempo de ejecución, por ejemplo, si en “Valor por Defecto”

se introduce GLOBAL.CODIGO_EMPRESA y se activa la check, el valor por defecto que se

introducirá al crear el registro es el valor que contenga la variable

GLOBAL.CODIGO_EMPRESA en ese momento. Si no se activa la check se introducirá el literal

“GLOBAL.CODIGO_EMPRESA”.

• Ejecutar código de Pre-Validación: Indica si se ejecutará código PL/SQL antes de realizarse la

validación desde la lista de valores, este código puede estar definido en el mantenimiento de

programas en el campo Código PL/SQL de validación o en la lista de valores, prevaleciendo el

primero sobre el de la lista de valores.

• Código PL/SQL de Pre-Validación: Código que se ejecutará antes de realizar la validación con

la SQL de la lista de valores. Solo se ejecutará si está marcada la check Ejecutar.

• Código PL/SQL pulsación INTRO / TABULACIÓN: Se ejecuta cuando el usuario pulsa intro

en el campo. Si está activa la check “Sólo en campos inválidos” únicamente se ejecutará si el

campo está pendiente de validar y se pulsa INTRO o TABULACIÓN, si no está activada la check

se ejecuta siempre.

• Bloquear validación sin pulsar INTRO / TABULACIÓN: Si está activada y el usuario intenta

validar el campo sin pulsar INTRO / TABULACIÓN, por ejemplo, saliendo del campo con el

ratón, se le mostrará un mensaje de que debe de pulsar INTRO.

• Código PL/SQL de validación: El programa ya tiene que incorporar en el fuente las validaciones

de integridad necesarias que nunca podrán ser alteradas sin modificar el fuente, como por ejemplo,

que un artículo no pueda tener más de dos unidades de almacén. Pero mediante la introducción de

código PL/SQL de validación asociado al campo se pueden añadir restricciones específicas en una

determinada instalación o qué su cambio no suponga una alteración del diseño de la aplicación.

Este código PL/SQL se ejecutará después de haberse realizado la validación desde lista de valores.

En caso de que se tenga marcada la check Validar desde Lista de Valores (si esta check no está

marcada este código se ejecutará igual). Por tanto, si se ha activado la validación desde lista de

valores se supone que en el momento de ejecutarse este código el campo ya tiene un valor válido.

• Código PL/SQL de pre-ejecución de lista de valores: Este código se ejecuta en el momento en

que el usuario solicita una lista de valores, y tiene como principal característica que dependiendo

del resultado de su ejecución podemos hacer que salte una lista de valores u otra.

• Código PL/SQL de Doble click: Se ejecuta cuando el usuario hace doble click con el ratón sobre

el campo.

• Código PL/SQL de entrada en campo: Se ejecuta cada vez que entra el cursor en el campo,

siempre y cuando no se venga de una lista de valores.

• Cláusula Where por Defecto 2: Si se especifica habilita un botón en la lista de valores para poder

conmutar entre condiciones. Para más información ver el apartado: Listas de valores.

49

• Tipo Where Validación: Permite indicar la cláusula where que se usará para realizar la validación

en caso de listas de valores de doble where. Puede tener los siguientes valores:

o Según Lista de Valores: Se usa el tipo de validación indicado en la lista de valores.

o Principal: Se usa la cláusula where principal.

o Secundaria: Se usa la cláusula where secundaria.

o Personalizada: Se puede indicar una cláusula where personalizada en el campo

“Cláusula Where para Validación”.

• Etiqueta Botón Where Defecto y Etiqueta Botón Where Defecto 2: Se usa cuando se especifica

una Cláusula Where por Defecto 2 e indican el texto que va a contener el botón que se habilita

para conmutar entre condiciones. Para más información ver el apartado: Listas de valores.

• Cláusula Where en modo Entrada Consulta: Permite indicar una Cláusula Where que se

aplicará cuando el bloque se encuentre en modo de entrada consulta. Para más información ver el

apartado: Listas de valores.

• Selección de archivo: En casos de campos en que el usuario deba de introducir una ruta a un

archivo se activará la check “Selección archivo”, una vez marcada aparecerá la siguiente ventana:

NOTA: La activación de selección de archivo únicamente implica que en ese campo se puede abrir

mediante el botón de lista de valores el diálogo del sistema operativo de selección de archivo, en el caso de

querer almacenar un archivo en la base de datos, simplemente es necesario que en el bloque exista un campo

oculto llamado ID_ARCHIVO de tipo NUMBER y al campo donde el usuario va a subir el archivo

(normalmente se llamará NOMBRE_ARCHIVO) se le asigne la clase CLASE_ARCHIVO.

o Selección: Se indica cual es el objetivo de la búsqueda:

▪ Selección de archivo para abrir: Solo se pueden seleccionar archivos

existentes.

▪ Selección de archivo para guardar: Se pueden seleccionar archivos existentes

y no existentes, si se selecciona uno existente se mostrará el mensaje de que se

va a sobreescribir y se pedirá aceptación al usuario.

▪ Selección de directorio: Abre la ventana de selección de directorios.

o Campo Archivo: Campo al que se le va a asignar el nombre del archivo. Para indicar el

campo se introducirá BLOQUE.CAMPO. Si no se indica se asignará al campo en que se

encuentre el cursor.

o Campo Directorio: Campo al que se le va a asignar el directorio del archivo

seleccionado. Para indicar el campo se introducirá BLOQUE.CAMPO.

o Título: Texto que aparecerá en la ventana de selección de archivo.

o Filtro: Se usará para filtrar los tipos de archivos que se visualizarán en la selección, como

separador de los tipos de archivos se usará el carácter “|”. Ejemplo para seleccionar

archivos de tipo texto y todos los archivos: “Archivos de Texto (*.txt)|*.txt|Todos los

archivos (*.*)|*.*|”

NOTAS:

• Si a un campo se le asocia más de un elemento (lista de valores, calendario, calculadora) solo

funcionará uno y este será en el que indica el siguiente orden: primero lista de valores, segundo

calendario y en tercer lugar la calculadora.

• Para más información sobre Código PL/SQL y su estructura, ver el apartado: Código PL/SQL.

50

Control de visualización de campo según el sector del grupo empresarial

Se puede indicar a los sectores a los que aplica el campo, de forma que se puede hacer que dependiendo de

los sectores activados a nivel de grupo empresarial el campo esté o no disponible. Además, esa información

es muy valiosa para el programa de chequeo de versión, ya que si un campo únicamente aplica al sector de

“Extrusión de Aluminio” al chequear la versión sabe que únicamente tendrá que tenerlo en cuenta cuando

se está empaquetando la versión de Extrusión de Aluminio. Si hay configuración de sectores para el campo

el campo “Calculadora” se mostrará con fondo rojo.

En el campo “Tipo Autorización” se indica como debe de considerar los sectores que se indican en el

multiregistro:

• Disponible en todos los sectores: Se ignoran los sectores indicados

• Sólo para los sectores indicados: Se aplicará en los grupos empresariales que tengan

configurados alguno de los sectores indicados.

• Excluir en los sectores indicados: Al contrario que el valor anterior, se mostrará únicamente

cuando el usuario esté validado en Libra en un grupo empresarial que no tenga activado alguno de

los sectores que se indican en el multiregistro.

51

Pestañas

Permite indicar que pestañas tiene el programa (siempre que no sea dinámico), para la traducción de su

etiqueta por idioma y la autorización por perfiles de usuario.

En el código de pestaña introduciremos LIENZO.PESTAÑA, es decir, para la pestaña TAB1 del lienzo

CANVAS_BASE introduciremos CANVAS_BASE.TAB1.

• Etiqueta Estándar: Introducimos la etiqueta que se usará por defecto en caso de que en el idioma

del usuario no exista etiqueta personalizada. Si no se introduce nada en este campo se mostrará la

etiqueta que contenga el fuente del programa.

• Sistema de Autorización: Indicamos si perfiles introducidos en el bloque de Perfiles Autorizados

/ Desautorizados pueden visualizar o no la pestaña, es decir, si este campo contiene el valor

Autorización solo los usuarios con los perfiles especificados podrán visualizar la pestaña y si este

campo contiene el valor Desautorización todos los usuarios podrán visualizar la pestaña excepto

los de los perfiles indicados.

• Bloque Etiquetas por Idioma: Introducimos por idioma la etiqueta correspondiente para la

pestaña.

52

Informes

• Archivo Excel:

o Sí - Desde el report: Se ejecuta la salida nativa de Oracle para generar la hoja de cálculo.

o Sí – Usando Rep2Excel: El informe no debe tener código específico, se genera un HTML

y se llama a la herramienta rep2excel que lo convierte en Excel.

o No dar opción: No aparece el tipo de archivo Excel en la pantalla de selección de

parámetros del report.

• Tipo Impresora Programa: Puede ser modificado por informe:

o Verticales: Sólo se mostrarán impresoras que no tengan marcado el parámetro de carro

ancho en impresoras lógicas.

o Horizontales: Sólo se mostrarán impresoras que tengan marcado el parámetro de carro

ancho en impresoras lógicas.

o Ambas: Aparecerán todas las impresoras independientemente del parámetro de

impresoras lógicas.

• Destino: También está relacionado con los informes. Se indica el destino por defecto que va a

proponer el programa. Hay las siguientes opciones:

o Pantalla.

o Impresora.

o Archivo.

o Email.

o Fax

o Gestión Documental

o Usuario: Buscará en la parametrización de la configuración del usuario, que puede ser

cualquiera de las anteriores.

• Apertura automática hoja de cálculo: Indica como debe de comportarse cuando en la impresión

se selecciona impresión a archivo de tipo hoja de cálculo. Si se indica “Según Usuario” se tomará

el valor por defecto que tenga el usuario en personalización por usuario / empresa. Si tiene el valor

“Sí”, todas las impresiones que generen archivo de hoja de cálculo abrirán el archivo de forma

automática independientemente de la parametrización del usuario. Si tiene el valor “No”, nunca

se abrirán los archivos una vez generados.

• Pedir Página Inicial: Si se activa, permite al usuario indicar en que número de página desea

comenzar la numeración de páginas del informe, en vez de comenzar siempre en 1. Al report se le

pasará el parámetro P_LIBRA_PAGINA_INICIAL que deberá contemplar.

53

Se pueden configurar otros informes que se ejecutarán en sustitución del que tenga el fuente del programa

en caso de que el usuario lo seleccione, a esos informes se les pasarán los mismos parámetros que recibiría

el listado que tenga el fuente, más los parámetros indicados en la sección de parámetros en los campos

“Parámetro” y “Valor Parámetro”.

Configuración de los informes

• Tipo Impresora: Permite indicar a nivel de informe el tipo de impresora (Horizontal / Vertical /

Según programa).

• Código PL/SQL para antes de ejecución del informe: Este código se ejecuta antes de lanzar el

informe seleccionado, de esta forma, se puede alterar el informe que se va a ejecutar en el momento

que el usuario pulsa el botón de imprimir. Para modificar el informe a ejecutar indicará con

PKPANTALLAS.SET_VARIABLE_ENV('IMP_INFORME', 'informe');

• Código pl/sql para generación de hoja de cálculo: Desde los códigos PL/SQL se puede

configurar la generación de hojas de cálculo, en este código PL/SQL se puede introducir el método

de generación de la hoja de cálculo, de forma de que se evite usar Rep2Excel. (Ver apartado:

Generación de hojas de cálculo mediante PKXLSBD).

En la pantalla de selección se vería de esta forma:

• Informe: Archivo de reports o BI-Publisher a ejecutar. También Se pueden incluir informes

implementados mediante el generador de informes, para ello en el campo “Informe” se indicará

“GI:” y a continuación el código del informe. Por ejemplo “GI:CLIVTAS” ejecutara el informe

CLIVTAS.

• Nombre archivo sugerido (sin extensión): Nombre del archivo que se le propondrá al usuario

antes de generar el informe como destino archivo.

Se puede establecer que aparezca un informe seleccionado por defecto, para ello hay que posicionarse en

el informe y pulsar “Seleccionar como informe inicial”. Para quitar el informe inicial hay que pulsar “Borrar

informe inicial”.

Si se activa la check “Obligatorio seleccionar informe” no se permitirá dejar en blanco el desplegable de

Informes, de esta forma se anula el informe que es llamado dentro del programa.

IMPORTANTE: En los programas que se rompe la herencia del tamaño y posición del campo

BREPORT.INFORME se deshabilita el funcionamiento de estos informes. En ese caso se puede forzar

activando la check “Forzar activación”.

Por código se puede interactuar con este campo con las siguientes funciones:

• IMP.GET_PROPIEDAD(‘BREPORT_INFORME_CODIGO_INFORME’): Devuelve el código

del informe seleccionado.

• IMP.GET_PROPIEDAD(‘BREPORT_INFORME_NOMBRE_INFORME’): Devuelve el

nombre del archivo del informe seleccionado.

• IMP.GET_PROPIEDAD(‘BREPORT_INFORME_TITULO_INFORME’): Devuelve la etiqueta

del informe seleccionado.

El report también recibirá los datos del informe seleccionado en los siguientes parámetros:

P_INFORME_NOMBRE_INFORME, P_INFORME_CODIGO_INFORME,

P_INFORME_TITULO_INFORME.

54

Generación / Impresión Múltiples

En la pestaña "Informes" del mantenimiento de programas cuando se posiciona el cursor sobre uno de los

informes definidos se habilita un nuevo plug-in "Informes Adicionales" que abre una ventana en donde se

pueden indicar los informes a imprimir a mayores del indicado. En esta misma ventana hay que indicar el

orden en el que tienen que ser impresos / generados.

Los informes adicionales también tienen que estar definidos como informes antes de ser usados como

informe adicional. Si se quiere que el informe no esté visible en el desplegable, de forma que sólo pueda

ser utilizado como informe adicional de otro, se marcará orden 0 y de esa forma se carga al abrir el

programa, pero no se muestra en el desplegable.

Si la descripción del informe aparece en naranja indica que ese informe tiene configurados informes

adicionales.

También se puede indicar para cada informe el nombre de archivo sugerido. Es importante indicar nombres

de archivos distintos para que cuando durante la impresión de los informes adicionales genere archivos

distintos y no se sobrescriban.

Funcionamiento según destino:

• Pantalla: Se abre una pestaña del navegador por cada informe.

• Impresora: Se imprimen en orden todos a la misma impresora.

• Fichero: Se genera en el directorio indicado un archivo por cada informe.

• Correo Electrónico: Depende de la configuración que se tenga por Usuario / Empresa

o Método nativo de Reports: Será reports quien mande por mail los informes y mandará

un mail por cada informe.

o Java: Todos los informes se adjuntan en el mismo por correo.

o Microsoft Outlook: El método que tenemos de lanzar Outlook con el informe adjunto

sólo permite adjuntar un único archivo, por lo que se meten todos los archivos en un ZIP

y se adjunta ese archivo comprimido con los informes.

o Aplicación asociada a Tipo de Archivo: Se abren cada uno de los archivos con la

aplicación que tenga asociada en el sistema operativo del usuario y ya desde esa

aplicación será el usuario quien manualmente ejecute la acción de envío de correo

electrónico.

55

56

Control de visualización de informe según sector del grupo empresarial

Se puede indicar a los sectores a los que aplica el informe, de forma que se puede hacer que dependiendo

de los sectores activados a nivel de grupo empresarial el informe esté o no disponible. Si hay configuración

de sectores para el informe el campo “Orden” se mostrará con fondo rojo.

En el campo “Tipo Autorización” se indica como debe de considerar los sectores que se indican en el

multiregistro:

• Disponible en todos los sectores: Se ignoran los sectores indicados

• Sólo para los sectores indicados: Se aplicará en los grupos empresariales que tengan

configurados alguno de los sectores indicados.

• Excluir en los sectores indicados: Al contrario que el valor anterior, se mostrará únicamente

cuando el usuario esté validado en Libra en un grupo empresarial que no tenga activado alguno de

los sectores que se indican en el multiregistro.

57

Ventanas

Nos permite indicar qué ventanas tiene el programa, para la traducción de su etiqueta por idioma.

• Etiqueta: Introducimos la etiqueta que se usará por defecto en caso de que en el idioma del usuario

no exista etiqueta personalizada. Si no se introduce nada en este campo se mostrará la etiqueta que

contenga el fuente del programa.

• Bloque Etiquetas por Idioma: Introducimos por idioma la etiqueta correspondiente para la

ventana.

58

Plug-in

Un plug-in consiste en parametrizar llamadas a otros programas desde la botonera vertical.

Lo vamos a ver con un ejemplo: Imaginemos que un cliente nos pide que desde las líneas de los albaranes

de compra quiere consultar las tarifas de compra del artículo.

Para configurar la llamada iremos al Mantenimiento de programas y en la sección de bloques hay que

posicionarse en el bloque en el que se quiere añadir un plug-in.

En el ejemplo que estamos viendo el bloque en el que queremos añadir el plug-in es el B3, en la descripción

normalmente ya indica a que se corresponde “Líneas de Entradas Albaranes Compras”, y vamos a la pestaña

“Plug-in”.

Llamaremos a una consulta ligera llamada tarprolt, que recibe los siguientes parámetros:

• CODIGO_ARTICULO: Código del artículo que queremos consultar.

• ORGANIZACION_COMPRAS: Código de la organización de compras en la que queremos

consultar los precios.

• FECHA_VALIDEZ: Fecha a la que queremos que estén vigentes los precios.

El resultado de la parametrización del ejemplo sería el siguiente:

Al ejecutar el programa, al entrar en las líneas la botonera aparece el siguiente botón:

Al pulsar el nuevo botón después de haber introducido el código del artículo aparece la ventana del

programa llamado, que al ser una ventana modal parece que está totalmente integrada en el programa.

59

La pantalla de configuración de plug-ins consta de dos bloques, el primero es en el que especificamos los

plug-ins que se quieren activar en el bloque anteriormente seleccionado. Campos para configurar plug-ins:

• Código: Será un código que le daremos según el criterio que se quiera. El usuario no lo va a

visualizar.

• Descripción: Será el texto que aparecerá al pasar el ratón por encima del icono del plug-in y en el

menú en el apartado “Opciones”.

• Programa Llamado: Nombre del programa, informe, o disparador que se llamará cuando el

usuario pulse el botón correspondiente al plug-in. Si se especifica código PL/SQL indicado que se

ejecute en vez del programa se puede poner aquí cualquier cosa ya que lo va a ignorar en el caso

de que list-item que se encuentra debajo del código PL/SQL tenga el valor “Ejecutar en vez del

programa”.

o Ejecutar informe del Generador de Informes: Se indicará el código del informe con

el prefijo GI: (ejemplo: GI:VENTAS).

o Ejecutar un disparador definido dentro del propio fuente: Se indicará el nombre del

disparador a ejecutar con el prefijo TG: (ejemplo: TG:MI_TRIGGER)

o Ejecutar un programa forzando una determinada opción de menú: Se indicará el

código de la opción de menú con el prefijo MN: (ejemplo: MN:2P102323).

• Forzar grabar cambios antes de ejecutar: Si el usuario tiene cambios que todavía no han sido

grabados en la base de datos, antes de ejecutar el plug-in se le mostrará un mensaje en el que se le

pide si desea grabar los cambios. Si el usuario indica que “No” se cancela la ejecución del plug-

in.

• Esperar a que termine el Programa Llamado: En caso de activar esa opción el programa

llamado funciona igual que si el usuario fuese por ventanas y lo abriese desde el menú, es decir,

el programa llamador continúa su ejecución, la conexión a la base de datos es distinta para cada

programa. El inconveniente principal es que el programa llamado no puede devolver valores al

programa llamador y tampoco puede compartir variables de sesión de la base de datos, y como

ventaja se evita el mensaje “No se puede iniciar otra llamada a pantalla” cuando el usuario tiene

varios programas llamados de forma concurrente.

• Permitir grabar en programa llamado: Únicamente tiene sentido cuando está activada la check

“Esperar a que termine el Programa Llamado”. Cuando el programa llamador espera al programa

llamado se comparte la misma conexión con la base de datos, por lo que si el programa llamado

hace un commit también afectará a lo que tenga pendiente de grabar el programa llamador. Si se

60

activa esta check al usuario no se le permite grabar, los cambios que haga tienen que ser grabados

una vez regrese al programa llamador.

• Botonera: Se puede indicar si el botón se quiere que aparezca en la botonera vertical o en la

horizontal. La botonera vertical tiene capacidad para más botones.

• Icono: Nombre del icono a utilizar. Este campo dispone de una lista de valores de todos los iconos

disponibles en Libra.

• Menú Lateral: Esta check únicamente aplica cuando en “Programa Llamado” es un programa de

la movilidad de Libra. Al activar esta check el programa se abrirá en navegador del menú lateral

reemplazando el menú del usuario. El usuario para cerrar ese programa y volver a visualizar el

menú tiene que pulsar sobre los tres puntos del menú y seleccionar “Regresar al Menú”.

• Plantilla: En caso de ser un programa dinámico el que se indica en “Programa llamado” se puede

forzar a que se ejecute con una determinada plantilla.

• ID: En caso de que el programa indicado en “Programa llamado” tenga varias personalizaciones

se puede forzar a que se ejecute con una en concreto.

• Orden: Si el bloque tiene varios plug-in indicará en que orden se muestran en la botonera vertical.

Lo normal será indicar el orden de 1 a 20, siendo el menor número el que primero saldrá, justo

después de los botones que ya tenga el programa definido de forma fija.

• Tecla rápida: Se puede asignar a un plug-in una tecla de función de manera que al ser pulsada se

ejecute dicho plug-in. La paridad entre el número de tecla rápida y la tecla real del teclado

dependerá del fichero de recursos de Oracle Forms que tenga el pc instalado. Por defecto son las

siguientes:

o 1: CONTROL+SHIFT+F1

o 2: CONTROL+SHIFT+F2

o 3: CONTROL+SHIFT+F3

o 4: F11

o 5: F5

o 6: F12

o 7: CONTROL+SHIFT+F7

o 8: CONTROL+SHIFT+F8

o 9: CONTROL+SHIFT+F9

• Control de activación y desactivación del plug-in: El plug-in se puede activar o desactivar en

base a un valor de un campo del programa:

o Campo Control Activación: Campo en el que se va a comprobar el valor que tiene a la

hora de decidir si se activa o desactiva el plug-in. Se indicará BLOQUE.CAMPO. Cada

vez que el usuario haga un cambio en el campo indicado se realizará la evaluación del

control. Se pueden configurar campos adicionales sobre los que aplicar la evaluación en

el botón “Campos en los que evaluar el control de activación” de la botonera vertical.

o Operación: Lista de operaciones soportadas para hacer la comparación.

o Valor: Valor sobre el que se evaluará la Operación, si el resultado de la operación es

TRUE se activa el campo y si es FALSE se desactiva. Si en “Operación” se ha indicado

“Expresión” en este campo se indicará una expresión booleana, es decir, que devuelva

TRUE o FALSE. Ejemplo: (:bloque.campo1 = 'XXX' OR :b3.campo2 = 'YYYY').

• Modo Menú: Indica si al llamarse el programa se debe de mantener el menú del programa

llamador en el programa llamado o que este inicialice su propio menú. Valores posibles:

o No reemplazar: Se mantiene el menú del programa llamador en el programa llamado.

o Reemplazar: Se inicializa el menú del programa llamado.

• Modo Consulta: Indica si al llamarse al otro programa se va a hacer en modo de solo consulta o

no.

o Sólo Consulta: En el programa llamado solo se podrán ejecutar consultas, nunca

modificación de datos.

o No sólo consulta: En el programa llamado se pueden modificar datos.

61

• Código PL/SQL: Si tiene contenido ejecuta este código y dependerá de lo que tenga “Tipo de

ejecución de código PL/SQL” tiene o no en cuenta los campos Programa llamado, Modo menú,

Modo consulta y del contenido del bloque de parámetros. Ver sección de Código PL/SQL para

más detalles.

o Ámbito de ejecución del Código PL/SQL: Sobre el Código PL/SQL hay un List-Item

que permite indicar sobre qué registros se debe de ejecutar ese código. Los valores que

puede tomar son los siguientes:

▪ Ejecutar en el registro actual: Únicamente se ejecuta una vez y la ejecución

se realiza en el registro en el que se encuentra el cursor.

▪ Ejecutar para todos los registros: Se va ejecutar ese código para todos los

registros que existan en ese momento en el bloque. Por defecto se ejecuta para

todos los registros que se encuentran en el bloque en el que se encuentra el

cursor, pero a partir de la versión 6.0.8 de entorno se puede indicar un bloque

en concreto sobre el que ejecutar el código PL/SQL en cada uno de sus registros,

para ello hay que indicar el bloque en el campo “En bloque”.

▪ Sólo en registros seleccionados: Si el bloque tiene activada la check “Habilitar

selección de registros”, el usuario puede seleccionar varios registros y el plug-

in se ejecutará por cada uno de los registros que tenga seleccionados el usuario,

si el usuario no ha seleccionado ninguno se ejecutará sobre el registro en el que

se encuentra el cursor.

▪ Sólo seleccionados o para todos si no hay selección: Se comporta igual que

“Sólo en registros seleccionados”, con la diferencia de que si el usuario no ha

seleccionado ningún registro se ejecutará para todos los registros que tenga el

bloque en ese momento en vez de hacerlo únicamente para el registro actual.

NOTA: Si se selecciona una opción diferente a “Ejecutar en el registro actual”, se habilita

un botón “...”, al pulsar en este botón se abre una ventana en donde se pueden indicar dos

“Códigos PL/SQL adicionales”.

▪ Código PL/SQL a ejecutar antes de procesar registro a registro: Este código

PL/SQL se ejecuta antes de comenzar a ejecutarse el código PL/SQL

parametrizado en el plug-in, en este PL/SQL se podría cancelar la ejecución,

mediante “:p_parar_ejecucion”.

▪ Código PL/SQL a ejecutar después de procesar registro a registro: Este

código PL/SQL se ejecuta al terminar de procesar por cada registro el código

PL/SQL del plug-in.

o Tipo de ejecución del código PL/SQL:

▪ Ejecutar en vez del programa: No se llama al programa indicado en

“Programa llamado”, solo se ejecuta el código PL/SQL.

▪ Ejecutar antes del programa: Primero se ejecuta el código PL/SQL y luego se

ejecuta el programa indicado en “Programa Llamado”. En el código PL/SQL se

62

puede saber si se está ejecutando antes del programa si

pkpantallas.get_variable_int_varchar2('PKLIBPNT.PUNTO_EJEC_CODIGO

_PLSQL') devuelve el valor ‘A’.

▪ Ejecutar después del programa: Primero se ejecuta el programa indicado en

“Programa Llamado” y una vez se sale de ese programa se ejecuta el código

PL/SQL. En el código PL/SQL se puede saber si se está ejecutando antes del

programa si

pkpantallas.get_variable_int_varchar2('PKLIBPNT.PUNTO_EJEC_CODIGO

_PLSQL') devuelve el valor ‘D’.

▪ Ejecutar antes y después del programa: Se ejecuta antes de ejecutarse el

programa indicado en “Programa Llamado” y otra vez después de salir de ese

programa.

Con solo especificar estos datos ya tiene que aparecer en la botonera del programa al entrar en el bloque el

botón del plug-in, pero lo único que hará al pulsarlo es llamar al programa, pero sin ningún parámetro, en

el ejemplo que estamos siguiendo el programa llamado no sabe el artículo que tiene el usuario en la línea

del albarán de compras, por tanto, no podrá mostrar el precio, para pasar los parámetros dependerá del caso

y del programa que se llame.

Los campos que tenemos que indicar para pasar parámetros son los siguientes:

• Parámetro: Nombre del parámetro que recibe el programa llamado, este dato depende del

programa al que llamemos, posiblemente el consultor tenga que consultar a un técnico para que le

diga los parámetros que tiene que pasar.

• Valor Parámetro: Permite configurar de donde va a obtener el valor del programa principal para

ser pasado al parámetro del programa plug-in. Este valor se puede ser de cuatro tipos:

o Variable: Se puede obtener de:

▪ Campo: Se especifica en formato BLOQUE.CAMPO del que queremos obtener

el valor. Este será la opción más común.

▪ Variable global: Se introduce GLOBAL.VARIABLE.

▪ Parámetro: Parámetro local del programa principal, se introduce

PARAMETER.NOMBRE_PARAMETRO

o Constante: Será un valor fijo y lo indicaremos entre comillas simples, por ejemplo

‘10002’.

o Fórmula: Las fórmulas serán evaluadas en el momento de la ejecución del plug-in. Para

indicar una fórmula hay que indicar el prefijo F: y a continuación la fórmula. Ejemplo:

F:'01/01/' || TO_CHAR(f_current_date, 'YYYY')

o Propiedad: Se pasará :XXX:<objeto>:<propiedad>, donde XXX, indica el tipo de objeto

del que se quiere obtener la propiedad. Ejemplo: :GBP:CAMPOS:DEFAULT_WHERE

se corresponde con la propiedad DEFAULT_WHERE del bloque CAMPOS. Tipos:

▪ GBP: Bloque (Get_Block_Property).

▪ GIP: Item (Get_Item_Property).

▪ GWP: Window (Get_Window_Property).

▪ GFP: Form (Get_Form_Property).

▪ GCP: Canvas (Get_Canvas_Property).

▪ GTP: Tab (Get_Tab_Page_Property).

▪ GMP: Menú (Get_Menu_Item_Property).

▪ GII: Item Instance (Get_Item_Instance_Property).

▪ GLL: Get_List_Element_Label. Si la propiedad es '0' devolverá el texto del

elemento seleccionado en ese momento.

▪ PIP: DISPSTD.GET_PROPIEDAD del Item.

▪ PBP: DISPSTD.GET_PROPIEDAD del Bloque.

▪ PFP: DISPSTD.GET_PROPIEDAD del Programa.

63

Devolver valor desde el plug-in al programa llamador

Para devolver valores a campos del programa llamador desde el programa llamado usaremos la siguiente

instrucción:

VALIDACIONES.RETORNO_PLUG_IN(<valor a devolver>, <destino>);

• <valor a devolver>: Valor que envía el programa llamado al programa llamador.

• <destino>: Campo o parámetro del programa llamado en donde se va asignar el valor.

Ejemplo:

VALIDACIONES.RETORNO_PLUG_IN(:bsustituidos.codigo_articulo_sus, 'B8.REFERENCIA');

Este código asigna en B8.REFERENCIA del programa llamador el valor contenido en

bsustituidos.codigo_articulo del programa llamado.

Permisos

Cuando se desarrolla un programa para que funcione únicamente como plug-in, para evitar tener que

ponerlo en los menús por perfil se puede indicar en el tipo del programa que es “Plug-in”.

Autorizar / Desautorizar plug-in

En el mantenimiento de programas personalizados se puede especificar que perfiles tienen acceso a un

determinado plug-in o qué perfiles lo tienen desautorizado.

Si en el campo “Sistema de Autorización” se indica “Desautorización” los perfiles indicados en “Perfiles

Autorizados / Desautorizados” no podrán ejecutar el plug-in, si no se especifica ninguno todos los usuarios

pueden usar el plug-in.

Si en “Sistema de Autorización” se indica “Autorización” solo los perfiles indicados en “Perfiles

Autorizados / Desautorizados” podrán ejecutar el plug-in, si no se especifica ninguno ningún usuario podrá

ejecutar el plug-in.

Plug-ins globales a un programa

Se pueden crear plug-ins globales a todos los bloques de un programa, el funcionamiento es similar a

cuando se crean para un determinado bloque, lo único que hay que hacer es asociarlos al bloque

.GLOBALPLUGINS (importante, tiene un punto al principio del texto GLOBALPLUGINS).

Crear plug-ins globales a todos los programas de Libra.

También se pueden crear plug-ins globales a todos los programas y sus bloques, para ello hay que dar de

alta el programa con código .GLOBALPLUGINS (importante, tiene un punto al principio del texto

GLOBALPLUGINS) con un único bloque .GLOBALPLUGINS (también con un punto al principio del

texto).

64

Control de visualización del plug-in según sector del grupo empresarial

Se puede indicar a los sectores a los que aplica el plug-in, de forma que se puede hacer que dependiendo

de los sectores activados a nivel de grupo empresarial el plug-in esté o no disponible. Si hay configuración

de sectores para el plug-in el campo “Orden” se mostrará con fondo rojo.

En el campo “Tipo Autorización” se indica como debe de considerar los sectores que se indican en el

multiregistro:

• Disponible en todos los sectores: Se ignoran los sectores indicados

• Sólo para los sectores indicados: Se aplicará en los grupos empresariales que tengan

configurados alguno de los sectores indicados.

• Excluir en los sectores indicados: Al contrario que el valor anterior, se mostrará únicamente

cuando el usuario esté validado en Libra en un grupo empresarial que no tenga activado alguno de

los sectores que se indican en el multiregistro.

Duplicado automático de tablas detalle al duplicar registro de bloque

A los bloques se les puede asociar una lista de relaciones que se usarán para duplicar los registros hijos de

la tabla asociada al bloque cuando se duplique un registro. Al indicar los códigos de relación ya es el entorno

quien se encarga de todo, crear los registros de detalle y consultar los bloques hijos en el caso de ser

necesario. Las tablas que se duplican pueden o no estar en el mismo programa, por ejemplo, en el programa

de "Organizaciones Comerciales" se puede indicar la relación "0000007310" y con eso al duplicar una

organización comercial también duplicará los tipos de pedido.

Para que aparezca la pestaña "Relaciones Duplicado Registro" hay que indicar el campo "Tabla

Relaciones", que por lo general coincidirá (salvo por ejemplo cuando hay vistas actualizables) con la tabla

asociada al bloque.

Se puede utilizar cualquier relación donde la tabla maestra sea la indicada en tabla relaciones, incluso se

pueden utilizar las relaciones desactivadas para el chequeo de integridad. En el caso de que no se quiera

tener en cuenta una relación por personalización habrá que darla de alta en programas personalizados y

desactivar la check "Activa".

En "WHERE adicional" se incluirá la condición que deben de cumplir los registros a duplicar, por lo general

no hace falta meter ahí ningún tipo de where, únicamente en aquellos casos que existan ciertos tipos de

registro no se quieran duplicar.

El campo “Orden” indica el orden en el que han de procesarse las relaciones. Es importante el orden cuando

hay claves foráneas en las tablas ya que debe duplicarse antes la cabecera que las líneas ya que si se

duplicasen líneas sin cabeceras fallaría el proceso al violarse la integridad de la clave foránea.

65

Documentación de modificaciones en programas

Cuando alguien haga una modificación deberá de indicar quién la hizo, la fecha y un comentario, para que

esté disponible esa información a consultores.

Personalizar programas

Cualquier modificación que se realice en el cliente en el mantenimiento de programas será sobrescrita y

por tanto perdida en el próximo cambio de versión, para solucionar este problema se ha ideado un

mantenimiento de programas personalizado. Este programa es similar al mantenimiento de programas

anterior, pero con varias diferencias.

• Las modificaciones que se realicen en este mantenimiento sobre un programa prevalecerán sobre

la información que exista para el mismo objeto (bloque, campo, pestaña, ventana) del

mantenimiento de programas estándar. Estas modificaciones no serán nunca sobrescritas al

realizar un cambio de versión.

• En las pestañas “Botonera” y “Pestañas” tiene un bloque de Perfiles Autorizados / Desautorizados,

en donde se introducirán los perfiles de usuario que podrán visualizar o no visualizar la pestaña,

dependiendo del parámetro de Sistema de Autorización.

• Hay una pestaña para poder añadir plug-ins personalizados a un programa, los plug-in se describen

en un apartado específico.

Se puede crear cualquier personalización sin que tenga que existir en el estándar, incluso se podría crear un

programa directamente en programas personalizados sin que tenga que haber nada en las tablas estándar.

66

Modificar por código las propiedades cargadas del mantenimiento de programas.

DISPSTD.SET_PROPIEDAD

Una vez se han cargado las propiedades del mantenimiento de programas, se pueden alterar durante la

ejecución desde el código fuente del programa.

Para modificar una propiedad se llamará a:

DISPSTD.SET_PROPIEDAD(<código>, <código_propiedad>, <valor_propiedad>, <tipo>);

• <código>: Dependerá de <tipo>, si se quiere modificar la propiedad e un campo será

BLOQUE.CAMPO, en caso de un bloque será el nombre del bloque y en caso de un plugin es

BLOQUE.CODIGO_PLUGIN.

• <código_propiedad>: Código de la propiedad a modificar (ver tabla de propiedades).

• <valor_propiedad>: Valor que se va a asignar a la propiedad.

• <tipo>: Puede contener los siguientes valores:

o C: Propiedad de campo, es el valor por defecto que se asume si no se pasa este parámetro.

o B: Propiedad de bloque.

o PI: Propiedad de Plug-in

DISPSTD.GET_PROPIEDAD

Al igual que se puede establecer una propiedad para un campo se puede leer con la función:

DISPSTD.GET_PROPIEDAD(<código>, <código_propiedad>, <tipo>) RETURN <valor_propiedad>;

A nivel de campo

PROPIEDAD Descripción Valores posibles

ACTIVAR_CALCULADORA Indica si el campo tiene calculadora. S, N

ACTIVAR_CALENDARIO Indica si el campo tiene calendario, si se

asocia calendario implica que va a validar el

campo como si fuese una fecha.

S, N

CODIGO_LISTA Código de la lista de valores que tiene

asociado el campo.

Código de una lista de

valores que exista en

LISTAS_VALORES_CAB o en

LISTAS_VALORES_PERS_CAB.

LV_CODIGO_LISTA Igual que en CODIGO_LISTA, pero aparte de

establecer esta propiedad también carga de la

lista de valores las propiedades:

LV_COLUMNA_DESCRIPCION

LV_COLUMNA_CODIGO

LV_WHERE_DEFECTO

LLAMAR_PROGRAMA

PARAMETRO_LLAMAR_PROGRAMA

CODIGO_PL_SQL_PREVALIDACION

TRANSLATE_BC_ARG1

TRANSLATE_BC_ARG2

CASE_INSENSITIVE_QUERY_DESC

Igual que en CODIGO_LISTA.

IMPORTANTE: Se debe de tener

cuidado en que parte del

código se pone la asignación

de esta propiedad ya que

implica acceso a la base de

datos para cargar los datos

de la lista de valores.

LV_EJECUTAR_CONSULTA Indica si al llamar a la lista de valores va a

ejecutar consulta o va a entrar directamente

en modo de entrada de consulta.

S, N

LV_VALIDAR_DESDE_LISTA Indica si se va a realizar la validación del

campo usando la SELECT y la where de la lista

de valores.

S, N, L (Forzar Lista de

Valores Contextual), P

(Llamar programa asociado)

LV_COLUMNA_DESCRIPCION Número de columna de la lista de valores que

contiene la descripción para trasladar al campo

D_XXXXX si el usuario selecciona algo de la

lista de valores.

1 .. 10

LV_COLUMNA_CODIGO Número de la columna de la lista de valores que

contiene el código que va a trasladar al campo

desde el que se llama a la lista de valores si

el usuario selecciona algo de la lista de

valores.

1 .. 10

67

LV_CONSULTA_BD SQL que debe de cumplir la normativa de formato

para una lista de valores. Ver apartado: Listas

de Valores.

Ejemplo: SELECT

codigo_rapido c1, nombre c2,

rowid rowid_lov FROM

clientes

LV_WHERE_DEFECTO Cláusula Where a aplicar a la lista de valores. Ejemplo: codigo_empresa =

:global.codigo_empresa

LV_WHERE_ENTER_QUERY Cláusula Where a aplicar a la lista de valores

cuando el bloque está en modo de entrada

consulta

LV_CODIGO_PL_SQL_PRE_EJECUCION Código PL-SQL que se ejecutará cuando el

usuario llama a la lista de valores, ver

sección de mantenimiento de programas y de

código PL/SQL.

Código PL/SQL

CODIGO_PL_SQL_VALIDACION Código PL-SQL que se ejecutará después de la

validación por lista de valores, ver sección

de mantenimiento de programas y de código

PL/SQL.

Código PL/SQL

CODIGO_PL_SQL_PREVALIDACION Código PL-SQL que se ejecutará antes de la

validación por lista de valores. Ver sección

de mantenimiento de programas y de código

PL/SQL.

Código PL/SQL

CODIGO_PL_SQL_ENTRADA Código PL-SQL que se ejecutará cuando el cursor

entra en el campo. Ver sección de mantenimiento

de programas y de código PL/SQL.

Código PL/SQL

LLAMAR_PROGRAMA Programa al que se llama cuando el usuario hace

doble click en el campo o cuando pulsa en el

botón de hipervínculo de la botonera.

Ejemplo: CLIENTES

PARAMETRO_LLAMAR_PROGRAMA Parámetro que se pasa al programa Ejemplo: CODIGO_CLIENTE

DESACTIVA_BUSQUEDA_CONTEXTUAL Si se desactiva y el usuario tiene activada

búsqueda contextual en el campo que se

desactiva no funciona.

S, N

VALIDACION_FILTRO Indica si se va a validar como si fuese un

filtro, es decir, si lo que introduce el

usuario no existe en la validación desde lista

de valores se permite continuar y si existe se

carga la descripción.

S, N

VALOR_POR_DEFECTO Valor por defecto que se va a asignar al

programa en los registros nuevos.

LISTA_VALORES_GRUPO Indica si la lista de valores va a ser normal

o se va a ir mostrando por grupos.

S: Si con 9 registros.

5: Si con 5 registros.

N: No.

M: Multiselección.

T: Multiselección

Totalizada.

TRANSLATE_BC_ARG1 Texto reemplazado en la búsqueda contextual.

Para más información ver el apartado: Listas

de valores.

TRANSLATE_BC_ARG2 Texto a reemplazar en la búsqueda contextual.

Para más información ver el apartado: Listas

de valores.

CASE_INSENSITIVE_QUERY_DESC Indica si al hacer la búsqueda contextual por

la descripción se va a ignorar la diferencia

entre mayúsculas y minúsculas.

S, N

COLUMNA_ORDER Campo o SQL por la que se va a ordenar cuando

se indica con el botón derecho sobre el campo

que se quiere ordenación ascendente o

descendente.

Ejemplo:

LPAD(codigo_rapido, 8, '0')

LV_WHERE_DEFECTO2 Segunda cláusula where de la lista de valores,

si se especifica se habilita un botón en la

lista de valores para conmutarlas.

ETIQUETA_BOTON_WHERE En caso de especificar una segunda cláusula

where a la lista de botón será la etiqueta que

tendrá el botón para conmutar a la segunda.

ETIQUETA_BOTON_WHERE2 En caso de especificar una segunda cláusula

where a la lista de botón será la etiqueta que

tendrá el botón para conmutar a la primera.

68

TAMANO_MAXIMO Número máximo de caracteres admitidos.

SELECCION_ARCHIVO Indica si se habilita lista de valores para

selección de archivos para el campo.

N: Sin selección de archivo.

D: Selección de directorio.

G: Selección de archivo para

grabar.

A: Selección de archivo para

abrir.

SEL_ARCHIVO_CAMPO_DIRECTORIO En caso de estar activada la selección de

archivos en qué BLOQUE.CAMPO devuelve el

directorio seleccionado.

SEL_ARCHIVO_CAMPO_ARCHIVO En caso de estar activada la selección de

archivos en qué BLOQUE.CAMPO devuelve el

archivo sin ruta seleccionado.

SEL_ARCHIVO_TITULO Titulo que aparecerá en la ventana de selección

de archivo.

SEL_ARCHIVO_FILTRO Filtro de los archivos a mostrar.

BLOQUEA_VALIDA_SIN_INTRO Bloquear que no se pueda validar el campo sin

pulsar INTRO o TABULACIÓN

S: bloqueado.

N: Sin bloquear.

CODIGO_PL_SQL_VALIDA_ENTER Código PL/SQL que se ejecutará cuando el

usuario pulse INTRO en el campo.

LV_BLOQUEAR_SALTO_CAMPO Bloquear que salte de campo cuando se

selecciona un valor de una lista de valores.

S: Bloqueado el salto de

campo.

N: Salta de campo.

PL_SQL_VALIDA_ENTER_INVALID Indica si el código de

CODIGO_PL_SQL_VALIDA_ENTER se ejecuta sólo

cuando el campo esté inválido.

S: Se ejecuta sólo cuando el

campo está inválido.

N: Se ejecuta siempre que el

usuario pulse INTRO o

TABULACIÓN

DESACTIVAR_LV_AUTOMATICA Si el usuario / empresa tiene marcado que en

campos obligatorios con lista de valores si se

intentan dejar en blanco se lance

automáticamente la lista de valores, se puede

desactivar mediante esta opción.

S: Se desactiva la lista de

valores automática.

N: No se desactiva.

DEVOLVER_VALORES_SELECCIONADOS En caso de que el campo tenga en

LISTA_VALORES_GRUPO el valor M

(Multiselección) o T (Multiselección

totalizada) se puede indicar que los valores

que se han seleccionado automáticamente se

devuelvan al campo que llama a la lista de

valores.

S: Se devuelven los valores

seleccionados separados por

SEPARADOR_MULTISELECCIONADO

S.

N: No se devuelve, en el

código fuente del programa

se tiene que contemplar.

SEPARADOR_MULTISELECCIONADOS Carácter que separará los distintos valores que

se devuelven de la selección en una lista de

valores de multiselección.

FILTRO_OBLIGATORIO_EJE_CONS Indica si para hacer F8 o pulsar en botón el

campo tiene que tener valor, es decir, se

obligaría a entrar en modo entrada de consulta

(F7) meter un valor en ese campo y luego

ejecutar la consulta.

S: Obligatorio.

N: Opcional.

CODIGO_PL_SQL_DOBLE_CLICK Código PL/SQL que se ejecutará al hacer doble

click en el campo.

ETIQUETA_EXCEL Etiqueta a usar como título de la columna

cuando se exporten los valores del campo a hoja

de cálculo.

EDITOR_CAMPO A: Automático, F: Nativo de Forms, P: Texto

Plano, H: HTML

APLICA_VA_CURRENT_RECORD Únicamente se utiliza en SET_PROPIEDAD, permite

aplicar el atributo visual indicado a un campo

del registro actual. De esta forma se puede

aplicar cualquier color definido en la vista

V_COLORES_ERP.

Ejemplo:

dispstd.set_propiedad('BLOQUE.CAMPO',

'APLICA_VA_CURRENT_RECORD', 'BROWN_500');

69

Ejemplo: Asignar al campo B1. CODIGO la lista de valores CLIENTES añadiendo la condición de que el

estado del cliente sea el especificado en el campo B1.ESTADO, habilitando la validación por lista de

valores.

IF NVL(DISPSTD.GET_PROPIEDAD('B1.CODIGO', 'LV_CODIGO_LISTA'), '.') != 'CLIENTES' THEN

 DISPSTD.SET_PROPIEDAD('B1.CODIGO', 'LV_CODIGO_LISTA', 'CLIENTES');

 DISPSTD.SET_PROPIEDAD('B1.CODIGO', 'LV_VALIDAR_DESDE_LISTA', 'S');

 DISPSTD.SET_PROPIEDAD('B1.CODIGO', 'LV_WHERE_DEFECTO', ':where_lov AND estado = :b1.estado');

END IF;

A nivel de bloque

PROPIEDAD Descripción Valores posibles

ENVIAR_EXCEL Activa la posibilidad e envío a Excel cuando el

cursor está en el bloque

S, N

BLOQUEAR_SALIDA_HASTA_GRABAR Si tiene S, si se modifica un registro el usuario

no va a poder salir de él mientras no grabe

S, N

CODIGO_PL_SQL_INICIALIZACION Código PL/SQL que se ejecuta cada vez que se crea

un registro nuevo.

CODIGO_PL_SQL_VALIDACION Código PL/SQL que se ejecuta cada vez que se valida

el registro.

CODIGO_PL_SQL_BORRADO Código PL/SQL que se ejecuta cada vez que se borra

un registro.

CODIGO_PL_SQL_ENTRADA Código PL/SQL que se ejecuta cada vez que el cursor

entra en un registro.

CODIGO_PL_SQL_POST_INSERT Código PL/SQL que se ejecuta después de cada

inserción de registro.

CODIGO_PL_SQL_POST_UPDATE Código PL/SQL que se ejecuta después de cada

modificación de registro.

CODIGO_PL_SQL_POST_DELETE Código PL/SQL que se ejecuta después de cada

borrado de registro.

CODIGO_PL_SQL_CONSULTA Código PL/SQL que se ejecuta por cada registro que

viene de la base de datos al rellenarse el bloque.

CODIGO_PL_SQL_ENTRADA_BLOQUE Código PL/SQL que se ejecuta por cada vez que el

cursor entra en el bloque.

CODIGO_PL_SQL_PRE_DUPLICADO Código PL/SQL que se ejecuta antes de duplicar un

registro.

CODIGO_PL_SQL_POST_DUPLICADO Código PL/SQL que se ejecuta después de duplicar

un registro.

CONFIRMAR_BORRADO_REGISTRO Se usa para indicar si se debe pedir confirmación

al usuario para borrar el registro.

S: Se pide confirmación

N: No se pide

confirmación.

SELECCIONAR_CAMPOS_EXCEL Indica si se va a pedir al usuario cuando envíe

los datos del bloque a Excel los campos a ser

exportados.

S: Se pide al usuario los

campos a exportar.

N: No se le piden los

campos al usuario.

BLOQUEAR_SALIDA_HASTA_GRABAR Si tiene S, si se modifica un registro el usuario

no va a poder salir de él mientras no grabe

S, N

HABILITAR_SELECCION_REGISTROS Si se pasa el valor S, se habilita la selección de

registros múltiple.

S, N

MANTENER_CAMPO_CURSOR Si se pasa el valor S, al cambiar de registro

mantiene el cursor en el mismo campo mientras no

se navegue con el ratón o a un registro nuevo.

S, N

A nivel de programa

PROPIEDAD Descripción Valores

posibles

CODIGO_PL_SQL_GRABACION Código PL/SQL que se ejecuta antes de grabar.

CODIGO_PL_SQL_FINALIZACION Código PL/SQL que se ejecuta antes de salir.

70

SALIR_GRABAR_CAMBIOS_AUT Indica si se graban automáticamente los cambios que estén pendientes

de grabar sin preguntar al usuario cuando se sale del programa

S, N

PLT_VALIDA_RANGOS_CODIGO Si se pasa el valor N, deshabilita la validación del rango de código

de las plantillas.

S, N

ORDER_BY_NULLS Si se pasa L, al ordenar los nulos se mostrarán al final L, D

ACTIVA_TRAZA_SILENCIOSA Permite activar a partir de se momento una traza silenciosa del

programa, es decir, el usuario no recibirá en los mensajes los

códigos que se añaden en una traza normal. Mediante este método se

permite activar traza de forma controlada por programa.

BASICO

WARN

INFO

DEBUG

TRACE

DUPLICANDO Devuelve si el usuario ha pulsado duplicar en un registro que tiene

relaciones de detalle para ser duplicadas. N: No hay nada pendiente,

S: El usuario pulsó duplicar y se está esperando a que el usuario

cubra todos los datos de la clave primaria. F: El usuario ha

cubierto los datos de la clave primaria, en cuanto se navegue a un

nuevo campo se procederá al duplicado del detalle, una vez hecho

el duplicado se vuelve a pasar a valor N.

S, N, F

A nivel de plug-in

PROPIEDAD Descripción Valores posibles

ACTIVA_PLUG_IN Activa o desactiva un plug-in S: Activa plug-in

N: Desactiva plug-in

ICONO Cambia el icono asignado al plug-in

PROGRAMA_LLAMADO Permite cambiar el programa que se va a

ejecutar en el plug-in.

Si se cambia el programa y hay parámetros,

el nuevo programa tiene que ser compatible

con los parámetros indicados en el plug-in,

en caso contrario la ejecución dará error.

A nivel de Informe, mediante IMP.SET_PROPIEDAD

PROPIEDAD Descripción Valores posibles

PL_SQL_PRE_EJECUCION_REP Código PL/SQL para ejecutar antes del informe.

PL_SQL_POST_EJECUCION_REP Código PL/SQL para ejecutar después del informe.

EJE_PL_SQL_PRE_REP_SCREEN Indica si se ejecuta el código de preejecución del informe

cuando el destino es pantalla.

S, N

EJE_PL_SQL_PRE_REP_PRINTER Indica si se ejecuta el código de preejecución del informe

cuando el destino es Impresora.

S, N

EJE_PL_SQL_PRE_REP_FILE Indica si se ejecuta el código de preejecución del informe

cuando el destino es Archivo.

S, N

EJE_PL_SQL_PRE_REP_MAIL Indica si se ejecuta el código de preejecución del informe

cuando el destino es Correo electrónico.

S, N

EJE_PL_SQL_PRE_REP_FAX Indica si se ejecuta el código de preejecución del informe

cuando el destino es Fax.

S, N

EJE_PL_SQL_PRE_REP_GESTDOC Indica si se ejecuta el código de preejecución del informe

cuando el destino es Gestión Documental.

S, N

EJE_PL_SQL_PRE_POST_SCREEN Indica si se ejecuta el código de postejecución del informe

cuando el destino es pantalla.

S, N

EJE_PL_SQL_PRE_POST_PRINTER Indica si se ejecuta el código de postejecución del informe

cuando el destino es Impresora.

S, N

EJE_PL_SQL_PRE_POST_FILE Indica si se ejecuta el código de postejecución del informe

cuando el destino es Archivo.

S, N

EJE_PL_SQL_PRE_POST_MAIL Indica si se ejecuta el código de postejecución del informe

cuando el destino es Correo electrónico.

S, N

EJE_PL_SQL_PRE_POST_FAX Indica si se ejecuta el código de postejecución del informe

cuando el destino es Fax.

S, N

EJE_PL_SQL_PRE_POST_GESTDOC Indica si se ejecuta el código de postejecución del informe

cuando el destino es Gestión Documental.

S, N

FICHERO_REPORT Informe a ejecutar

CODIGO_IMPRESORA Código de la impresora que se usará como destino del informe.

71

SERVIDOR_BIP Dirección del servidor de BI-Publisher configurado

NOMBRE_ARCHIVO_FIJADO A partir de ese momento se propondrá como nombre de archivo

el indicado, para reestablecerlo habrá que volver a establecer

esta propiedad con el valor NULL. Se puede utilizar las

siguientes variables de sustitución:

• <usuario>: Se reemplaza por el código de usuario.

• <fecha>: Se reemplaza por la fecha en formato

YYYYMMDD

• <hora>: Se reemplaza por la hora en formato HH24MISS

El nombre de archivo debe de indicarse sin extensión ya que

será añadida de forma automática.

Si en el mantenimiento de programas, para el informe en

cuestión se ha configurado un nombre de archivo ese

prevalecerá sobre el indicado en esta propiedad.

SALIR_AUT_BREPORT Si se pasa S, después de cada impresión se cerrará la ventana

de impresión BREPORT

S, N

A nivel de Lista de Valores, mediante LV.SET_PROPIEDAD

PROPIEDAD Descripción Valores

posibles

CENTRAR_LOV Se indica si al abrir la lista de valores se va a centrar en la pantalla

o se va a quedar en la posición 0,0 de la pantalla.

S, N

WHERE_LOV Cláusula Where que se va aplicar a la lista de valores

WHERE_LOV2 Segunda Cláusula Where de la lista de valores, al especificarla se va

habilitar un botón para poder conmutar.

ETIQUETA_BOTON_WHERE Cuando se especifica WHERE_LOV2, será la etiqueta que tenga el botón de

conmutación cuando se está aplicando la where normal de la lista de valores

ETIQUETA_BOTON_WHERE2 Cuando se especifica WHERE_LOV2, será la etiqueta que tenga el botón de

conmutación cuando se está aplicando la segunda where de la lista de

valores

MULTISELECCION Permite activar o desactivar la multiselección

S: Activa la multiselección.

T. Activa la multiselección con totalización de las columnas numéricas.

N: Desactiva la multiselección.

S, N, T

72

Código PL/SQL

El código PL/SQL tiene las siguientes características:

• Se ejecuta en la base de datos, por tanto, no se puede hacer referencia a funciones y

procedimientos almacenados en librerías o en el fuente del programa.

• Al ejecutarse en la base de datos, se pueden crear funciones, procedimientos y packages en la

propia base de datos e introducir el código en cualquier lenguaje reconocido por la base de datos,

ya sea PL/SQL, Java, XML, ...

Hay dos métodos de ejecución de código PL/SQL:

• V0 (Legacy - Se usa en versiones de Libra anteriores a la 6.1.2).

o Permite usar dentro del código hasta un máximo de 20 variables del propio programa de

la misma forma que si se ejecutase en un bloque PL/SQL dentro de Forms, es decir, se

pueden hacer referencia a campos de un bloque con :bloque.campo, a parámetros con

:parameter.parametro, ... Estas referencias son de entrada / salida, es decir, si en el código

PL/SQL de validación se hace una asignación a un campo del programa esta asignación

se verá reflejada en el programa, por ejemplo si introducimos :bloque.campo := ‘10’,

después de la ejecución el campo ‘campo’ del bloque ‘bloque’ contendrá el valor 10.

IMPORTANTE: Los campos de tipo DATE o DATETIME se enlazan como texto.

o Se pueden usar variables de sólo lectura que no cuentan dentro de la limitación de las 20

variables máximas. Para indicar que la variable es de sólo lectura hay que hacer referencia

a ella con ::, por ejemplo ::b1.codigo

o No se puede parar la ejecución a mitad del código, es decir, el código se ejecutará

íntegramente, pero se pueden encadenar códigos PL/SQL usando :p_codigo_sql.

• V1: A diferencia de V0 (Legacy) tiene los siguientes cambios:

o El número de variables a enlazar del programa es ilimitado.

o Los campos de los bloques que sean DATE o DATETIME se enlazan como DATE en

vez de como texto.

En versiones anteriores a 6.1.2 se ejecutarán en modo V1 y en 6.1.2 o posteriores en modo V2. Se puede

forzar que un determinado código PL/SQL se ejecute en una versión u otra añadiendo al principio de todo

uno de los siguientes comentarios:

• /*PLSQLV0*/: Fuerza la ejecución en modo V0 (Legacy) en versiones 6.1.2 o posterior.

• /*PLSQLV1*/: Fuerza la ejecución en modo V1 en versiones anteriores a la 6.1.2.

Existen los siguientes parámetros fijos que solo son de salida de resultados:

• :p_parar_ejecucion: Se le puede asignar ‘S’ , ‘N’, ‘O’, ‘V’, 'T', 'P' durante la ejecución del código,

esto no implica que si asignamos el valor ‘S’ no se ejecute el código que hay a continuación,

implica que si asignamos el valor ‘S’ después de haberse ejecutado la validación PL/SQL se va a

realizar un RAISE Form_Trigger_Failure y por tanto, si es un código de validación, el campo va

a continuar con el estado INVÁLIDO.

Si asignamos el valor ‘O’ solo se parará la ejecución si el usuario pulsa el botón de cancelar en el

mensaje que se le muestre.

Si asignamos el ‘V’ y el usuario pulsa cancelar en el mensaje se restablecerá el valor que introdujo

originalmente el usuario en el campo (puede ser que el código pl/sql lo modificase) y el campo

queda inválido, es decir, se ejecuta un RAISE Form_Trigger_Failure. En caso de que acepte el

mensaje continuará con el valor devuelto por el código PL/SQL y se valida el campo.

73

Con el valor 'T' funciona exactamente igual que 'V', pero si el usuario pulsa cancelar en el mensaje

se restablece el valor introducido por el usuario originalmente en el campo, pero con la diferencia

de que el campo queda validado.

Si se asigna el valor 'P', el campo o registro se valida independientemente si el usuario pulsa el

botón de aceptar o el de cancelar, pero si hay algo en p_codigo_pl_sql únicamente se ejecuta si el

usuario pulsa aceptar.

En el caso de recuperar el valor anterior, por defecto se recupera el valor que tenía el campo antes

de ejecutar el PL/SQL, si se quiere reestablecer el valor que tenía el campo a un momento anterior

a que el usuario lo modificase, se puede añadir un segundo carácter en :p_parar_ejecucion con el

valor P o D. Con el valor P recupera el valor de antes de entrar en el campo y con B el valor que

devuelve la propiedad DATABASE_VALUE para ese campo. Ejemplo: :p_parar_ejecucion :=

‘VP’;

• :p_tipo_mensaje y :p_codigo_mensaje: Una vez finalizada la ejecución de la validación si tienen

valor se mostrará el mensaje correspondiente de la tabla MENSAJES. Se puede personalizar el

mensaje asignando el texto del mismo en la variable de salida :p_texto_mensaje. Es posible

reemplazar cadenas dentro del mensaje que se va a mostrar mediante llamadas a

pkpantallas.set_msg_replace_texto(cadena1, cadena2), de forma que en el próximo mensaje

que se muestre se cambia el texto indicado en “cadena1” por el que tenga “cadena2”.

• :p_valor_campo_ok: Se usa en combinación con :p_tipo_mensaje y :p_codigo_mensaje. En esta

variable se puede introducir el valor que deberá de asignarse al campo que está lanzando el

mensaje en caso de que el usuario pulse el botón “Aceptar”.

• :p_valor_campo_cancel: Se usa en combinación con :p_tipo_mensaje y :p_codigo_mensaje. En

esta variable se puede introducir el valor que deberá de asignarse al campo que está lanzando el

mensaje en caso de que el usuario pulse el botón “Cancelar”.

• :p_lv_lista_valores: Una vez finalizada la ejecución del código, si este campo termina con valor,

se ejecutará la lista de valores que indique el valor, independientemente de la lista de valores que

tenga asociado el campo en el mantenimiento de programas. Si se usa en un código de validación

(pre validación o validación) fallará si el usuario sale del campo usando el ratón, para evitar este

problema debemos comprobar antes de asignarle valor si se está ejecutado desde un disparador

KEY-NEXT-ITEM con el parámetro :p_ejecutado_desde_kni que contendrá el valor ‘S’ si se

puede lanzar correctamente la lista de valores. En caso de querer evitar que se valide el campo sin

lanzar la lista de valores deberemos usar :p_ejecutado_desde_kni en combinación con

:p_tipo_mensaje, :p_codigo_mensaje y :p_parar_ejecucion como se muestra en el siguiente

ejemplo:

IF :p_ejecutado_desde_kni = 'N' THEN

 :p_parar_ejecucion := 'S';

 :p_tipo_mensaje := 'CAMPO';

 :p_codigo_mensaje := 'ENTER';

ELSE

 :p_lv_lista_valores := 'CLIENTES';

 :p_lv_ejecutar_consulta := 'S';

END IF;

• :p_lv_ejecutar_consulta: Se usa en el caso de que :p_lv_lista_valores devuelva valor, si se indica

el valor ‘S’ la lista de valores se ejecutará mostrando registros, mientras que si tiene el valor ‘N’

la lista de valores se ejecutará en modo ENTER-QUERY, es decir, en modo de entrada de filtro.

• :p_lv_where: Se usa en el caso de que :p_lv_lista_valores devuelva valor, indicará la condición

con la que se debe ejecutar la lista de valores. Si se deja en blanco usará la where que tenga por

defecto la lista de valores.

• :p_lv_consulta_bd: Se usa en el caso de que :p_lv_lista_valores devuelva valor, permite

modificar la SELECT que va a enviar la lista de valores a la base de datos, si este parámetro no se

especifica se usará la SELECT que tenga por defecto la lista de valores.

74

IMPORTANTE: “:p_lv_lista_valores”, “:p_lv_ejecutar_consulta”, “:p_lv_where” y

“:p_lv_consulta_bd” no afectan a las reglas de validación del campo, es decir, únicamente se utilizan en

la ventana de la lista de valores a la hora de visualizar los valores, pero internamiente no cambia el

comportamiento del campo, para modificar la lista de valores hay que usar comandos plug-in, por ejemplo:

PKPANTALLAS.INICIALIZAR_CODIGO_PLUG_IN;

PKPANTALLAS.COMANDO_PLUG_IN('PKLIBPNT_SIP', 'BLOQUE.CAMPO', 'LV_CODIGO_LISTA', 'CLIENTES');

PKPANTALLAS.COMANDO_PLUG_IN('PKLIBPNT_SIP', 'BLOQUE.CAMPO', 'LV_EJECUTAR_CONSULTA', 'S');

PKPANTALLAS.COMANDO_PLUG_IN('PLUGIN', 'BLOQUE.CAMPO', 'LV_VALIDAR_DESDE_LISTA', 'S');

PKPANTALLAS.COMANDO_PLUG_IN('PKLIBPNT_SIP', 'BLOQUE.CAMPO', 'LV_WHERE_DEFECTO', ':where_lov AND <condición>');

• :p_codigo_pl_sql: Permite que la ejecución de un código PL/SQL devuelva otro PL/SQL a

ejecutar en caso de que el parámetro :p_parar_ejecucion sea N, O u P y el usuario pulse aceptar el

mensaje. De esta manera podemos lanzar una pregunta y en base a la respuesta del usuario ejecutar

un proceso o no. El uso es ilimitado, es decir un :p_codigo_pl_sql podría devolver otro código y

así ir encadenando preguntas al usuario. Ejemplo: Se pregunta al usuario si quiere borrar el

registro, si pulsa en “Aceptar” se ejecutará lo que tenga :p_codigo_pl_sql, si pulsa “Cancelar” no

se hará nada.

:p_parar_ejecucion := 'O';

:p_tipo_mensaje := 'COMPR';

:p_codigo_mensaje := 'TEXTOLIB';

:p_texto_mensaje := '¿Desea borrar el registro?';

:p_codigo_pl_sql := 'DELETE FROM tabla WHERE condicion';

• :p_ejecutar_programa: Una vez finalizada la ejecución del código, si este campo termina con

valor, se ejecutará el programa que indique el valor. Para pasar parámetros al programa se

usaremos las siguientes instrucciones:

o PKPANTALLAS.INICIALIZAR_PARAMETROS_PLUG_IN: Se ejecuta sin

ningún parámetro y solo lo ejecutaremos una vez antes de pasar ningún parámetro.

o PKPANTALLAS.PARAMETRO_PLUG_IN(<parámetro>, <tipo>, <valor>): Se

llamará una vez por cada parámetro a pasar.

▪ <parámetro>: Nombre del parámetro que recibe el programa llamado,

este dato depende del programa al que llamemos.

▪ <tipo>: Le indicamos si el parámetro es una constante o es una referencia a un

campo del programa. ‘C’: Constante, ‘R’: Referencia.

▪ <valor>: De donde va a obtener el valor del programa principal para ser pasado

al parámetro del programa plug-in. Este valor depende del tipo:

• Por referencia, se puede obtener de:

o Campo, especificaremos BLOQUE.CAMPO del que

queremos obtener el valor. Este será la opción más común.

o Variable global, especificaremos GLOBAL.VARIABLE.

o De un parámetro local del programa principal,

especificaremos PARAMETER.NOMBRE_PARAMETRO

• Constante: Será un valor fijo, por ejemplo ‘10002’.

Se puede hacer que al llamar a un programa con :p_ejecutar_programa se ejecute con una

determinada personalización asignando la personalización a la variable

:global.id_personalizacion:

:global.id_personalizacion := '1';

:p_ejecutar_programa := 'CONSGEN';

:p_modo_menu_prog_llamado := 'DO_REPLACE';

:p_modo_consulta_prog_llamado:= 'NO_QUERY_ONLY';

75

Se puede hacer que al llamar a un programa dinámico se ejecute con una determinada plantilla

haciendo que se ignoren los permisos del usuario sobre esa plantilla asignado el código de la

plantilla a :global.forzar_plantilla:

:global.forzar_plantilla := 'NACIONALES';

:p_ejecutar_programa := 'CLIENTES';

:p_modo_menu_prog_llamado := 'DO_REPLACE';

:p_modo_consulta_prog_llamado:= 'NO_QUERY_ONLY';

El usuario puede tener un mismo programa en varias opciones de menú y esas opciones de menú

pueden tener algunas opciones particulares que las diferencian unas de otras, por ejemplo, en las

impresoras disponibles, para forzar que un programa se ejecute asumiendo la parametrización de

una determinada opción de menú se puede hacer asignando el código de la opción de menú a

:p_ejecutar_programa, con el prefijo MN:

:p_ejecutar_programa := 'MN:2V2500000510';

:p_modo_menu_prog_llamado := 'DO_REPLACE';

:p_modo_consulta_prog_llamado:= 'NO_QUERY_ONLY';

Se puede forzar la carga de una plantilla de valores del bloque de filtro mediante la variable

:global.id_plantilla_valores_defecto.

También se puede hacer que al ejecutar el programa ejecute algo de código, por lo que se podría

hacer una llamada por plug-in a un programa que no está preparado para ser llamado como plug-

in, el código que se quiere ejecutar en el programa destino hay que pasárselo al procedimiento:

pkpantallas.set_codigo_pl_sql_inicio(<codigo>);

Ejemplo: Desde la vista 360º, en la pantalla de cliente, el código que habría que usar en un plug-

in para llamar al programa CONPED1 (consulta de pedidos) para que al entrar haga la consulta

del cliente que tenemos en pantalla, y además quite la pestaña de filtros para que no se pueda

cambiar la consulta.

:p_ejecutar_programa := 'conped1';

:p_modo_menu_prog_llamado := 'DO_REPLACE';

:p_modo_consulta_prog_llamado:= 'NO_QUERY_ONLY';

PKPANTALLAS.SET_CODIGO_PL_SQL_INICIO('PKPANTALLAS.INICIALIZAR_CODIGO_PLUG_IN;

PKPANTALLAS.COMANDO_PLUG_IN(''COPY'', ''' || :bcliente.v_codigo_rapido || ''',

''B1.DESDE_CLIENTE'');

PKPANTALLAS.COMANDO_PLUG_IN(''COPY'', ''' || :bcliente.v_codigo_rapido || ''',

''B1.HASTA_CLIENTE'');

PKPANTALLAS.COMANDO_PLUG_IN(''VALIDATE'', ''RECORD_SCOPE'');

PKPANTALLAS.COMANDO_PLUG_IN(''SYNCHRONIZE'');

PKPANTALLAS.COMANDO_PLUG_IN(''EXECUTE_TRIGGER'', ''CONSULTAR'');

PKPANTALLAS.COMANDO_PLUG_IN(''STPP'', ''CANVAS_BASE.TAB0'', ''VISIBLE'',

''PROPERTY_FALSE'');');

También se puede utilizar para llamar a un Report, para ello hay que indicar la extensión .REP,

por ejemplo: :p_ejecutar_programa := 'informe.rep';. Con

PKPANTALLAS.INICIALIZAR_PARAMETROS_PLUG_IN y

PKPANTALLAS.PARAMETRO_PLUG_IN se le pueden pasar parámetros al informe.

Para indicar por donde imprimir el informe se puede utilizar (ver apartado: Impresión

Multidestino) PKPANTALLAS.INICIALIZA_MULTIDESTINO_REPORT y

PKPANTALLAS.ADD_MULTIDESTINO_REPORT. En el caso de no indicar el destino se

abrirá la pantalla típica de selección de destino de impresión.

76

Si no se indica un destino se abrirá una pantalla donde el usuario deberá indicar si quiere el informe

por pantalla, impresora, etc. Al seleccionar por impresora saldrán tanto las impresoras marcadas

como horizontales como las marcadas verticales, este comportamiento se puede modificar:

• Para forzar que únicamente salgan las verticales hay que ejecutar:

PKPANTALLAS.SET_VARIABLE_ENV('IMP_TIPO_IMPRESORA', 'V');

• Para forzar que únicamente salgan las horizontales hay que ejecutar:

PKPANTALLAS.SET_VARIABLE_ENV('IMP_TIPO_IMPRESORA', 'H');

• :p_modo_menu_prog_llamado: Se usa sólo si se ha especificado valor para

:p_ejecutar_programa. Indica si al llamarse el programa se debe de mantener el menú del

programa llamador en el programa llamado o que este inicialice su propio menú. Valores posibles:

o NO_REPLACE: (Valor por defecto, si no se especifica esta variable asumirá este valor).

Se mantiene el menú del programa llamador en el programa llamado.

o DO_REPLACE: Se inicializa el menú del programa llamado.

• :p_modo_consulta_prog_llamado: Se usa sólo si se ha especificado valor para

:p_ejecutar_programa. Indica si al llamarse al otro programa se va a hacer en modo de solo

consulta o no.

o QUERY_ONLY: (Valor por defecto, si no se especifica esta variable asumirá este valor).

En el programa llamado solo se podrán ejecutar consultas, nunca modificación de datos.

o NO_QUERY_ONLY: En el programa llamado se pueden modificar datos.

• :p_esperar_fin_programa_llamado: Valores posibles:

o N: (:p_esperar_fin_programa_llamado := 'N';). Se utiliza para indicar que el programa

llamador no debe de quedar a la espera de que termine el programa llamado. En caso de

activar esa opción el programa llamado funciona igual que si el usuario fuese por ventanas

y lo abriese desde el menú, es decir, el programa llamador continúa su ejecución, la

conexión a la base de datos es distinta para cada programa. El inconveniente principal es

que el programa llamado no puede devolver valores al programa llamador y tampoco

puede compartir variables de sesión de la base de datos, y como ventaja se evita el

mensaje “No se puede iniciar otra llamada a pantalla” cuando el usuario tiene varios

programas llamados de forma concurrente.

o S: (:p_esperar_fin_programa_llamado := 'S';). El programa llamador se queda a la

espera de que termine la ejecución del programa llamado. Si no se indica nada en esta

variable este es el valor por defecto que asume. Es importante tener en cuenta que cuando

se deshabilita que se espere por el programa llamado se ejecuta OPEN_FORM y Oracle

Forms no ejecutará nada más a partir de ese momento ya que el control pasa totalmente

al programa llamado, si se requiere que una vez se ejecute el programa se continúe

ejecutando código no se puede utilizar esta opción.

o H: (:p_esperar_fin_programa_llamado := 'H';). Funciona de la misma forma que el

valor S, pero con la diferencia de que se le indica al programa llamador que debe de

ocultarse. Esto es especialmente útil cuando el código PL/SQL se ejecuta cuando hay una

ventana modal abierta en el programa llamador, ya que si se indica el valor S la ventana

quedará por encima del programa llamado y quedará Libra bloqueado.

• :global.call_form_modo_post: Si se pasa el valor S, en el programa llamado no se podrá realizar

un COMMIT, el usuario podrá modificar datos pero estos no serán grabados hasta que no salga

del programa y grabe en el programa llamador.

77

Hay parámetros fijos que sólo son de entrada. Estos parámetros son los siguientes:

• :p_tipo_programa: Tendrá el valor del campo Tipo de Programa del mantenimiento de

programas.

• :p_validar_desde_lista: Tendrá el valor del campo Validar desde Lista de Valores.

• :p_ejecutado_desde_kni: Contendrá el valor ‘S’ si el código se está ejecutando por la acción de

usuario de pulsar ENTER o TAB sobre el campo, en otro caso tendrá el valor ‘N’.

• NAME_IN(‘SYSTEM.TRIGGER_ITEM’): Es sustituido por el contenido de la variable de

sistema :system.trigger_item. NOTA: Tiene que estar escrito todo en mayúsculas, es decir,

name_in(‘SYSTEM.TRIGGER_ITEM’); no será sustituido.

• Se pueden pasar variables entre códigos PL/SQL, mediante funciones SET_VARIABLE_ENV y

GET_VARIABLE_ENV definidas en el paquete PKPANTALLAS, para más información ver en

el apartado: Variables y parámetros globales, la sección: Definibles dinámicamente.

En los bloques PL/SQL se puede controlar el resultado de la ejecución de las listas de valores con las

siguientes funciones:

• pkpantallas.get_valor_ultima_ejecucion_lov('CAMPO'): Devuelve el nombre del último

campo que ha ejecutado una lista de valores en formato BLOQUE.CAMPO.

• pkpantallas.get_valor_ultima_ejecucion_lov('ROWID'): Devuelve el rowid del último registro

seleccionado por lista de valores, si la última ejecución de la lista de valores se canceló devolverá

NULL.

• pkpantallas.get_valor_ultima_ejecucion_lov('VALOR_RETORNADO'): Devuelve el último

código del último registro seleccionado por lista de valores, si la última ejecución de la lista de

valores se canceló devolverá NULL.

Ejemplos:

IF :campos.divisa_etiqueta IS NOT NULL AND :campos.doble_etiquetaje IS NOT NULL THEN

 IF :campos.divisa_etiqueta = 'EUR' AND :campos.doble_etiquetaje = '1' THEN

 :campos.doble_etiquetaje := '2';

 :p_parar_ejecucion := 'S';

 :p_tipo_mensaje := 'CAMPO';

 :p_codigo_mensaje := 'TEXTOLIB';

 :p_texto_mensaje := 'Si la divisa es EUR no se permite el primer valor';

 ELSIF :campos.divisa_etiqueta <> 'EUR' AND :campos.doble_etiquetaje <> '1' THEN

 :campos.doble_etiquetaje := '1';

 :p_parar_ejecucion := 'S';

 :p_tipo_mensaje := 'CAMPO';

 :p_codigo_mensaje := 'TEXTOLIB';

 :p_texto_mensaje := 'Si la divisa no es EUR el único valor permitido es el primero';

 END IF;

END IF;

Ejemplo con NAME_IN(‘SYSTEM.TRIGGER_ITEM’):

NAME_IN('SYSTEM.TRIGGER_ITEM') := PKVALIDACIONES.COMPRUEBA_ARTICULO(:global.codigo_empresa,

NAME_IN('SYSTEM.TRIGGER_ITEM'), TO_DATE(:global.fecha_trabajo, :global.nls_date_format), :p_tipo_programa,

:global.usuario, :global.superusuario, :p_parar_ejecucion, :p_tipo_mensaje, :p_codigo_mensaje,

:p_texto_mensaje);

Lo que realmente ejecutará este código si el contenido de :system trigger_item es :b3.codigo_articulo, y el

tipo de programa es CONSULTA:

:b3.codigo_articulo := PKVALIDACIONES.COMPRUEBA_ARTICULO(:global.codigo_empresa, :b3.codigo_articulo,

TO_DATE(:global.fecha_trabajo, :global.nls_date_format), ‘CONSULTA’, :global.usuario, :global.superusuario,

:p_parar_ejecucion, :p_tipo_mensaje, :p_codigo_mensaje, :p_texto_mensaje);

Ejemplo de lanzamiento de lista valores.

IF :b1.tipo_entidad = ‘PR’ THEN

 :p_lv_lista_valores := ‘PROVEEDORES’;

 :p_lv_ejecutar_consulta := ‘S’;

 :p_lv_where := ‘codigo_empresa = :global.codigo_empresa AND nivel_legal = ‘’S’’’;

ELSE

 :p_lv_lista_valores := ‘CLIENTES’;

 :p_lv_ejecutar_consulta := ‘S’;

 :p_lv_where := ‘codigo_empresa = :global.codigo_empresa AND nivel_legal = ‘’S’’’;

END IF;

78

Generación de hojas de cálculo desde códigos PL/SQL

Se permite generar desde los códigos PL/SQL, para ello se usa el paquete PKXLSBD de la misma forma

que el paquete PKXLS que se explica en el apartado: Generación de hojas de cálculo.

Ejecutar operaciones de Forms desde PL/SQL de Libra.

Un código PL/SQL puede devolver ciertas operaciones que se ejecutarán en el programa, como por ejemplo

cambiar propiedades de campos, mover el cursor de campo, ejecutar triggers, ...

Las operaciones que se ejecutarán en Forms serán ejecutadas secuencialmente, no hay opción a tomar

decisiones (salvo alguna pequeña excepción) por el medio de ellas, ni realizar bucles.

Para ello en el PL/SQL hay que ejecutar las siguientes instrucciones:

o PKPANTALLAS.INICIALIZAR_CODIGO_PLUG_IN: Sólo se ejecutará una vez, e indicamos

donde comenzamos a introducir las instrucciones a ejecutar en el programa.

o PKPANTALLAS.COMANDO_PLUG_IN(<operación>, [parametro1], [parametro2],

[parametro3]);

• <operación>: Ver tabla de operaciones.

• [parametro1, 2 y 3]: Opcional, y es obligatorio especificarlo si en la tabla de operaciones lo usa la

instrucción que se ejecuta.

Estas llamadas también se pueden hacer en un plug-in y se ejecutarán en el programa llamador cuando se

cierre el programa llamado.

Puede haber operaciones que den problemas si se usan en un código de validación (prevalidación o

validación) si el usuario sale del campo usando el ratón, para evitar este problema (cuando se use una de

esas operaciones) se puede comprobar si se está ejecutando desde un disparador KEY-NEXT-ITEM con el

parámetro :p_ejecutado_desde_kni que contendrá el valor ‘S’. En caso de querer evitar que se valide el

campo sin ejecutar nada deberemos usar :p_ejecutado_desde_kni en combinación con :p_tipo_mensaje,

:p_codigo_mensaje y :p_parar_ejecucion.

Operaciones soportadas:

Operación Ejecuta

COPY COPY(parametro1, parametro2)

DEFAULT_VALUE DEFAULT_VALUE(parametro1, parametro2)

GO_ITEM GO_ITEM(parametro1)

GO_BLOCK GO_BLOCK(parametro1)

GO_RECORD GO_RECORD(parametro1)

DO_KEY DO_KEY(parametro1)

EXECUTE_TRIGGER EXECUTE_TRIGGER(parametro1)

MSG_REPLACE_TEXTO MSG.REPLACE_TEXTO(parametro1, parametro2)

ALERTA MSG.ALERTA_PERSONAL(parametro1, parametro2, parametro3)

VALIDATE VALIDATE(parametro1). Ver en la ayuda de Forms, los valores que recibe el built-

in VALIDATE.

ERASE ERASE(parametro1)

IF_FF_RFTF IF Form_Failure THEN

 RAISE Form_Trigger_Failure;

END IF;

FF RAISE Form_Trigger_Failure;

HOST HOST(parametro1) ó HOST(parametro1, parametro2);

HOST_CLIENT Ejecuta la aplicación indicada en parametro1 en el equipo cliente. Si se utiliza

en cliente / servidor, tiene el mismo funcionamiento que el comando “HOST”.

79

REFRESCAR_BLOQUE Vuelve a ejecutar consulta en el bloque en que se encuentra el cursor, respetando

los filtros aplicados por el usuario y vuelve a posicionarse en el mismo registro

y campo en el que se encontraba el cursor.

SELECT_ALL Selecciona todo el texto del campo. Se podría meter en el PL/SQL de entrada en

campo de los campos multilínea para forzar que se seleccione todo el texto

siempre al entrar.

CURSOR_STYLE Set_Application_Property(CURSOR_STYLE, parametro1);

SIP Set_Item_Property(parametro1, parametro2, parametro3).Ver en la ayuda de Forms,

los valores que recibe el built-in Set_Item_Property.

SBP Set_Block_Property(parametro1, parametro2, parametro3).Ver en la ayuda de

Forms, los valores que recibe el built-in Set_Block_Property.

SFP Set_Form_Property(parametro1, parametro2, parametro3).Ver en la ayuda de Forms,

los valores que recibe el built-in Set_Form_Property.

SIIP Set_Item_Instance_Property(parametro1, parametro2, parametro3).Ver en la ayuda

de Forms, los valores que recibe el built-in Set_Item_Instance_Property.

SRBP Set_Radio_Button_Property(parametro1(*), parametro1(*), parametro2,

parametro3). (*) En el parámetro 1 tiene que ponerse de la forma

BLOQUE.CAMPO.ELEMENTO, BLOQUE.CAMPO se usará en el primer parámetro de

Set_Radio_Button_Property y ELEMENTO en el segundo. Ver en la ayuda de forms

los valores que recibe el built-in Set_Radio_Button_Property.

STPP Set_Tab_Page_Property(parametro1, parametro2, parametro3).Ver en la ayuda de

Forms, los valores que recibe el built-in Set_Tab_Page_Property.

SWP Set_Window_Property(parametro1, parametro2, parametro3).Ver en la ayuda de

Forms, los valores que recibe el built-in Set_Window_Property.

SMIP Set_Menu_Item_Property(parametro1, parametro2, parametro3).Ver en la ayuda de

Forms, los valores que recibe el built-in Set_Menu_Item_Property.

SCP Set_Canvas_Property(parametro1, parametro2, parametro3).Ver en la ayuda de

Forms, los valores que recibe el built-in Set_Canvas_Property.

SVAP Set_Va_Property(parametro1, parametro2, parametro3). Ver en la ayuda de Forms,

los valores que recibe el built-in Set_Va_Property.

FITEM Parámetro1 puede ser uno de los siguientes: VISIBLE, ACTIVADO, MODIFICABLE,

OBLIGATORIO. Parámetro2 el campo que se quiere modificar. Parámetro3: S o N.

POSTEAR POSTEAR;

CENTRA_VENTANA CENTRA_VENTANA(parametro1);

PKLIBPNT_SIP DISPSTD.SET_PROPIEDAD(parametro1, parametro2, parametro3). Ver apartado

Modificar por código las propiedades cargadas del mantenimiento de programas.

PKLIBPNT_SBP DISPSTD.SET_PROPIEDAD(parametro1, parametro2, parametro3, 'B'). Ver apartado

Modificar por código las propiedades cargadas del mantenimiento de programas.

PKLIBPNT_SPP DISPSTD.SET_PROPIEDAD(parametro1, parametro2, parametro3, 'P'). Ver apartado

Modificar por código las propiedades cargadas del mantenimiento de programas.

PKLIBPNT_SPI DISPSTD.SET_PROPIEDAD(parametro1, parametro2, parametro3, 'PI'). Ver apartado

Modificar por código las propiedades cargadas del mantenimiento de programas.

PKLIBPNT_IMP IMP.SET_PROPIEDAD(parametro1, parametro2). Ver apartado Modificar por código

las propiedades cargadas del mantenimiento de programas.

PKLIBPNT_LV LV.SET_PROPIEDAD(parametro1, parametro2). Ver apartado Modificar por código las

propiedades cargadas del mantenimiento de programas.

KEY_F Ejecuta el plug-in que tenga asignada la tecla rápida indicada en parametro1

EJECUTA_PLUG_IN Ejecuta el plug-in con código indicado en parámetro2 en el bloque indicado en

parametro1. NOTA: Se ejecuta independiente de si el usuario tiene permisos o

no sobre el PLUG-IN. Si se utiliza esta opción quiere decir que se ya se ha

validado que el usuario puede realizar la ejecución.

SYNCHRONIZE SYNCHRONIZE

GET_XML Genera en el ordenador cliente un archivo XML con ruta y nombre indicada en

parametro1 (se pueden utilizar los mismos modificadores de nombre de archivo

que GET_FILE_TXT) con el XML inicializado anteriormente con

pk_xml.init_linea_xml o con pk_xml.init_linea_xml_sql.

GET_XML_IAS Genera en el servidor de aplicaciones un archivo xml con ruta y nombre indicada

en parametro1 con el xml inicializado anteriormente con pk_xml.init_linea_xml

o con pk_xml.init_linea_xml_sql.

80

GET_FILE_TXT Genera en el ordenador cliente los archivos de texto con sus líneas

correspondiente que se han ido almacenando mediante

PKPANTALLAS.ADD_LINEAS_FICHERO. Ver apartado: Generar archivos de texto en

ordenador cliente desde código PL/SQL.

GET_FILE_TXT_IAS Genera en el servidor de aplicaciones los archivos de texto con sus líneas

correspondiente que se han ido almacenando mediante

PKPANTALLAS.ADD_LINEAS_FICHERO. Ver apartado: Generar archivos de texto en

ordenador cliente desde código PL/SQL.

ACTIVA_PLUG_IN Se usa para activar o desactivar un plug-in de un bloque, en parametro1 se

indicará BLOQUE.CODIGO_PLUGIN y en parámetro2 se indicará S para activarlo y N

para desactivarlo.

DELETE_RECORD DELETE_RECORD;

CLEAR_RECORD CLEAR_RECORD;

CLEAR_BLOCK CLEAR_BLOCK(parametro1);

CLEAR_LIST CLEAR_LIST(parametro1);. Permite borrar el contenido de un LIST-ITEM.

Parametro1 identifica el campo a borrar con BLOQUE.CAMPO

DLE Delete_List_Element(parametro1, parametro2);. Permite borrar únicamente un

elemento del list-item. Parametro1 identifica el campo a borrar con

BLOQUE.CAMPO y parametro2 es el número de elemento a borrar.

Si se borran más de uno hay que tener en cuenta que por cada borrado los

elementos se renumeran.

ALE Add_List_Element(parametro1, NVL(TO_NUMBER(Get_List_ElementCount(parametro1)),

0) + 1, parametro2, parametro3);. Añade al final de la lista un nuevo elemento.

Parametro1 identifica el con BLOQUE.CAMPO y parametro2 es el texto que se le

mostrará al usuario cuando seleccione la opción y parametro3 es el valor interno

que contendrá el campo cuando el usuario seleccione la opción.

PL POPULATE_LIST. Parametro1 identifica el campo a borrar con BLOQUE.CAMPO y

parametro2 es la sql que debe de usarse para rellenar la lista de valores. La

sql debe de sacar únicamente 2 campos, el primero será el texto que verá el

usuario al seleccionar el elemento y el segundo campo el código interno que

tendrá el campo cuando el usuario seleccione el elemento.

PLSQL Ejecuta el código pl/sql pasado en Parametro 1.

SCUSP Set_Custom_Property(parametro1, 1, parametro2, parametro3)

WWW Abre la web pasada por parámetro en v_parametro1 en el navegador

TXT2VOZ Exclusivo menú nuevo, es decir no disponible en menú legacy: Usa el sintetizador

de voz del navegador para reproducir el texto que se pasa en parametro1.

START Visualiza el archivo indicado en parámetro1 y que debe de encontrarse en el

ordenador que ejecuta Libra

SHOW_VIEW SHOW_VIEW(parametro1)

DESCARGA_ARCHIVO Permite especificar tanto el nombre del archivo como el filtro de tipo de

archivo que se mostrará en el selector, mediante sus dos primeros parámetros.

Su principal utilidad es habilitar la descarga de archivos generados desde

código PL/SQL, especialmente en programas de mantenimiento donde no es posible

incluir esta funcionalidad directamente en el FMB.

Ejemplo:

-- Generar y cargar el archivo SQL en PK_BLOB2BD

pk_gal_inarchstrd_bbdd.generar_sql(:b1.codigo, FALSE);

-- Inicializar y ejecutar la descarga del archivo al equipo del usuario

pkpantallas.inicializar_codigo_plug_in;

pkpantallas.comando_plug_in('DESCARGA_ARCHIVO', :b1.codigo || '.sql', 'SQL

(*.sql)|*.sql|');

Ejemplo de activación/desactivación de plug-in desde PL/SQL

PKPANTALLAS.INICIALIZAR_CODIGO_PLUG_IN;

IF :b1.cli_codigo = '0005' THEN

 PKPANTALLAS.COMANDO_PLUG_IN('ACTIVA_PLUG_IN', 'BCLIENTE.CL', 'N');

ELSE

 PKPANTALLAS.COMANDO_PLUG_IN('ACTIVA_PLUG_IN', 'BCLIENTE.CL', 'S');

END IF;

81

Generar archivos de texto en ordenador cliente o servidor de aplicaciones desde PL/SQL

Para generar un archivo de texto desde código PL/SQL primero hay que almacenar los datos de cada archivo

que se quiere generar en la base de datos mediante las siguientes funciones del paquete pkpantallas:

• pkpantallas.incializa_lineas_fichero: Se ejecuta una sola vez e inicializa las estructuras internas

del paquete pkpantallas para almacenar los datos para generar los ficheros.

• pkpantallas.add_lineas_fichero(<tipo>, <archivo_o_linea>): Se usa tanto para indicar el

nombre del archivo y la ruta como las líneas de texto que va a contener. Recibe dos parámetros,

en el primer parámetro <tipo> indica si en el segundo parámetro <archivo_o_linea> se está

pasando el nombre del archivo o de la línea de texto que va a contener el archivo. Obligatoriamente

la primera vez que llama se tiene que pasar un nombre del archivo y las siguientes líneas que se

añadirán a ese archivo, una vez se cambie el archivo se cierra el anterior y las nuevas líneas se

añaden al nuevo.

Al indicar el nombre de archivo se le pueden añadir modificadores (exclusivo versión Forms 12c)

concatenándolos al nombre del archivo con el separador “:MOD:”. Puede haber más de un

modificador, en ese caso se separan por comas. (ver ejemplo). Los modificadores disponibles son:

• GET_FILE_NAME: Se abre el selector de archivo para indicar en dónde y con que

nombre se grabará el archivo. En el selector se propone el nombre de archivo indicado.

Por defecto se considera que el archivo tiene extensión .txt, si fuese otra extensión se

puede indicar la cadena de extensiones del selector de archivos añadiendo : y la cadena,

por ejemplo, para archivos .log sería: LOG (*.log)|*.log|All Files (*.*)|*.*|

• DOS: Fuerza a que los saltos de línea sean para equipos Windows.

• CODIFICACION:WE8ISO8859P1: Codifica en formato ANSI el archivo de texto en

vez de UTF-8.

Para generar finalmente el archivo hay que llamar a GET_FILE_TXT. Ver apartado: Ejecutar operaciones

de Forms. Ejemplo:

pkpantallas.inicializa_lineas_fichero;

pkpantallas.add_lineas_fichero('F', 'fichero1.log:MOD:GET_FILE_NAME:LOG (*.log)|*.log|All Files

(*.*)|*.*|,DOS,CODIFICACION:WE8ISO8859P1');

pkpantallas.add_lineas_fichero('L', 'LINEA1');

pkpantallas.add_lineas_fichero('L', 'LINEA2');

pkpantallas.add_lineas_fichero('F', 'c:\temp\fichero2.txt');

pkpantallas.add_lineas_fichero('L', 'LINEA1');

PKPANTALLAS.INICIALIZAR_CODIGO_PLUG_IN;

PKPANTALLAS.COMANDO_PLUG_IN('GET_FILE_TXT');

Si el archivo se quiere almacenar en el servidor de aplicaciones en vez del equipo del usuario que ejecuta

Libra, en vez de usar el comando GET_FILE_TXT se usará el comando GET_FILE_TXT_IAS, en este

caso los modificadores del nombre de archivo serán ignorados y en el nombre de archivo debe de indicarse

la ruta completa en el servidor de aplicaciones.

Generar archivos XML en ordenador cliente o servidor de aplicaciones desde código pl/sql.

Para generar un archivo de texto desde código PL/SQL primero hay que inicializar en el paquete PK_XML

el archivo XML a descargar pasando una variable de tipo XMLTYPE a PK_XML.INIT_LINEA_XML o

pasando una consulta que devuelva un XMLTYPE en PK_XML.INIT_LINEA_XML_SQL.

Para ejecutar la descarga se realizará con el comando plug-in GET_XML (Ver apartado: Ejecutar

operaciones de Forms), en el primer parámetro del comando se indicará el nombre de archivo que puede

tener los mismos indicadores que los indicados para GET_FILE_TXT.

Ejemplo:

pk_xml.init_linea_xml_sql('SELECT XMLELEMENT("elementoraiz", XMLAGG(XMLELEMENT("cliente",

XMLELEMENT("codigo", codigo_rapido), XMLELEMENT("nombre", nombre), XMLELEMENT("direccion", direccion)))) FROM

clientes WHERE ROWNUM <= 3');

PKPANTALLAS.INICIALIZAR_CODIGO_PLUG_IN;

PKPANTALLAS.COMANDO_PLUG_IN('GET_XML', '3clientes.xml:GET_FILE_NAME');

82

Si el archivo se quiere almacenar en el servidor de aplicaciones en vez del equipo del usuario que ejecuta

Libra, en vez de usar el comando GET_XML se usará el comando GET_XML_IAS, en este caso los

modificadores del nombre de archivo serán ignorados y en el nombre de archivo debe de indicarse la ruta

completa en el servidor de aplicaciones.

Leer propiedades de objetos del programa desde código PL/SQL.

Desde el código PL/SQL se pueden leer las propiedades de Item, Block, Window, Form, Canvas, Tab,

Menú, Item Instance. Para ello se usará lo siguiente:

:XXX:<objeto>:<propiedad>

• XXX: Indica el tipo de objeto del que se quiere obtener la propiedad:

o GBP: Bloque (Get_Block_Property).

o GIP: Item (Get_Item_Property).

o GWP: Window (Get_Window_Property).

o GFP: Form (Get_Form_Property).

o GCP: Canvas (Get_Canvas_Property).

o GTP: Tab (Get_Tab_Page_Property).

o GMP: Menú (Get_Menu_Item_Property).

o GII: Item Instance (Get_Item_Instance_Property).

o GCU: Get_Custom_Property.

o GLL: Get_List_Element_Label. Si el <propiedad> es '0' o no se indica, devolverá el texto

del elemento actualmente seleccionado.

Para saber las propiedades disponibles en cada uno de los objetos es recomendable consultar la ayuda de

Forms Builder para más información.

NOTA: Los valores de las propiedades son las que tenía en objeto justo antes de ejecutarse el código

PL/SQL.

Ejemplo: Se lee la propiedad DEFAULT_WHERE del bloque CAMPOS y luego se le asigna al mismo

bloque, pero añadiendo la condición AND estado = 'ESPA'

PKPANTALLAS.INICIALIZAR_CODIGO_PLUG_IN;

PKPANTALLAS.COMANDO_PLUG_IN('SBP', 'CAMPOS', 'DEFAULT_WHERE', :GBP:CAMPOS:DEFAULT_WHERE || ' AND estado =

''ESPA'');

Gestionar los registros seleccionados por el usuario.

A nivel de bloque se puede activar la check “Habilitar selección de registros”, si está activada esa check el

usuario puede seleccionar varios registros de forma simultánea en un bloque. Desde los códigos PL/SQL

se puede acceder a los registros seleccionados por el usuario mediante las siguientes funciones:

• PKPANTALLAS.GET_REGISTROS_SELECCIONADOS: Devuelve un array de tipo

PKPANTALLAS.TABLA_REGISTROS_BLOQUE, en este array habrá una entrada por cada

registro que seleccionó el usuario.

• PKPANTALLAS.GET_VALOR_CAMPO_SELEC_VARCHAR2: Devuelve el valor de un

campo VARCHAR2 de uno de los registros seleccionados, para ello recibe los siguientes

parámetros:

o p_id: Número de registro dentro del array devuelto por

PKPANTALLAS.GET_REGISTROS_SELECCIONADOS.

o p_campo: Nombre del campo del que se quiere recoger el valor. IMPORTANTE:

Únicamente se guarda el contenido de aquellos campos que están en el grid, si hay

campos que tienen el nº de registros visualizados a 1 no se guardará su valor.

• PKPANTALLAS.GET_VALOR_CAMPO_SELEC_NUMBER: Igual que

PKPANTALLAS.GET_VALOR_CAMPO_SELEC_VARCHAR2, pero para campos numéricos.

• PKPANTALLAS.GET_VALOR_CAMPO_SELEC_DATE: Igual que

PKPANTALLAS.GET_VALOR_CAMPO_SELEC_VARCHAR2, pero para campos de tipo

fecha.

83

• PKPANTALLAS.GET_VALORES_CAMPO_SELEC_NUMBER: Devuelve el valor de un

determinado campo numérico en un array de tipo PKPANTALLAS.NUMBER_TABLE para

todos los registros. Es útil para cuando sólo interesa el valor de un campo de todos los registros.

• PKPANTALLAS.GET_VALORES_CAMPO_SELEC_VCH2: Devuelve el valor de un

determinado campo en un array de tipo PKPANTALLAS.VARCHAR2_TABLE para todos los

registros. Es útil para cuando sólo interesa el valor de un campo de todos los registros.

Ejemplo:

DECLARE

 v_registros PKPANTALLAS.TABLA_REGISTROS_BLOQUE;

 v_id PLS_INTEGER;

BEGIN

 v_registros := PKPANTALLAS.GET_REGISTROS_SELECCIONADOS();

 IF v_registros.COUNT = 0 THEN

 PKPANTALLAS.LOG('NO HAY REGISTROS SELECCIONADOS');

 ELSE

 v_id := v_registros.FIRST;

 WHILE v_id IS NOT NULL LOOP

 PKPANTALLAS.LOG('CAMPO SELECCIONADO: ' ||

 PKPANTALLAS.GET_VALOR_CAMPO_SELEC_VARCHAR2(v_id, 'CAMPO') || ', LV: ' ||

 PKPANTALLAS.GET_VALOR_CAMPO_SELEC_VARCHAR2(v_id, 'LV_CODIGO_LISTA'));

 v_id := v_registros.NEXT(v_id);

 END LOOP;

 END IF;

END;

Búsqueda contextual

En el programa de personalizar estética por usuario (u_mconfig) y empresa (u_mconem) hay dos checks:

• Lista de valores automática donde sea posible: Si se activa esta check cuando el usuario pulsa

ENTER en un campo obligatorio que está vacío y que tiene lista de valores en el mantenimiento

de programas la lanza de forma automática.

• Lista de valores contextual donde sea posible: Si activamos esta check y el campo tiene lista de

valores y validar desde lista de valores en el mantenimiento de programas se intentará validar (solo

cuando el usuario sale del campo pulsando ENTER, si lo hace con el ratón se sigue haciendo como

hasta ahora) el campo de la siguiente forma:

o Primero haciendo una búsqueda exacta por código, es decir, si es una organización

comercial, buscando aquella que el código coincida exactamente con lo que ha tecleado

el usuario.

o Búsqueda con LIKE por código sustituyendo espacios por % (también se pueden poner

%) y añadiendo siempre un % al final, en el ejemplo de la organización comercial, si el

usuario teclea 1 y no hay ninguna organización comercial con código 1 (ya se validaría

por el punto anterior) buscaría con LIKE codigo ‘1%’, si solo hay una que cumpla la

condición ya la validaría y si hay varias lanzará la lista de valores con los coincidentes.

o Búsqueda con LIKE por descripción o por los campos de la lista de valores que tengan

marcada la check “Búsqueda Contextual”. Si hay un único registro que cumpla la

condición ya lo valida y si hay varios que la cumplen lanza la lista de valores con los

coincidentes.

Para que esto funcione bien cuando se personalice el disparador KEY-NEXT-ITEM en vez de usar

VALIDATE(ITEM_SCOPE) usaremos DISPSTD.VALIDATE_ITEM, por ejemplo, si queremos que al

validar un campo con el teclado el cursor nos salte a otro bloque haremos lo siguiente:

DISPSTD.VALIDATE_ITEM;

GO_BLOCK(‘BLOQUE’);

84

Habilitar y Deshabilitar opciones de menú (Paquete FMENU)

Mediante el código genérico del formulario base ya se realizan las siguientes operaciones con el menú:

• Si el programa tiene bloque BREPORT, es decir que tiene listado se activa el botón de imprimir,

en caso contrario se deshabilita.

• Si nos situamos un registro cuyo bloque que tenga la propiedad Borrado permitido a NO,

deshabilita el botón de borrar registro, en caso contrario lo habilita.

• Si nos situamos en un bloque que tenga en la propiedad Inserción Permitida a NO se deshabilitan

los botones de crear registro y duplicar registro.

• Si nos situamos en un bloque que tenga en la propiedad Consulta Permitida a NO se deshabilitan

los botones de entrada consulta y ejecución consulta, en caso contrario se habilitan.

• Si nos situamos en un bloque que tenga bloques detalle se habilita el botón de bloque siguiente.

• Si nos situamos en un bloque que tenga un bloque padre se habilita el botón de bloque anterior.

• Si el campo tiene asociado programa para llamada directa se habilita el botón de llamada directa,

en caso contrario se deshabilita.

• Si el campo tiene lista de valores, calendario o calculadora se habilita el botón de lista de valores,

en caso contrario se deshabilita.

• Si nos situamos en un bloque que tenga asociada la clase BLOQUE_BLOQUE_REG_UNICO y

por tanto tenga como atributo visual de registro actual el BLOQUE_REGISTRO_UNICO se

deshabilitan los botones de primer y último registro y de siguiente y anterior registro. También

lleva asociado que se deshabilitan los disparadores KEY_UP y KEY_DOWN.

Con estos casos se cubre la práctica totalidad de los casos en donde hay que habilitar y deshabilitar opciones

de menú y botones de la botonera, pero en caso de ser necesario actuar sobre alguno de ellos para habilitar

o deshabilitar se usará el paquete FMENU de la librería PKLIBPNT.

NOTA: Para cambiar la propiedad de borrado permitido, modificación permitida según una condición, es

mejor usar el disparador PRE-RECORD en vez del WHEN-NEW-RECORD-INSTANCE ya que si el

usuario navega a otro registro con el ratón y pulsa en un campo de tipo check o botón de radio cambia su

valor antes de saltar el disparador WHEN-NEW-RECORD-INSTANCE.

Toda activación y desactivación de menús se debe de realizar mediante el paquete FMENU que tiene los

siguientes procedimientos:

• FMENU.IMPRIME(<parámetro>): Botón de imprimir.

• FMENU.CONSULTAR(<parámetro>): Botón de consultar (monitor).

• FMENU.GRAFICO(<parámetro>): Botón de gráficos.

• FMENU.LOV(<parámetro>): Botón de listas de valores.

• FMENU.BLOQUE_SIGUIENTE(<parámetro>): Botón de bloque siguiente.

• FMENU.BLOQUE_ANTERIOR(<parámetro>): Botón de bloque anterior.

• FMENU.GRABAR(<parámetro>): Botón de grabar.

• FMENU.DUPLICAR(<parámetro>): Botón de duplicar registro.

• FMENU.EDITAR(<parámetro>): Botón de editar campo.

• FMENU.BORRAR(<parámetro>): Botón de borrar registro.

• FMENU.PRIMER_REGISTRO(<parámetro>): Botón para navegar al primer registro del bloque.

• FMENU.ULTIMO_REGISTRO(<parámetro>): Botón para navegar al último registro del bloque.

• FMENU.SIGUIENTE_REGISTRO(<parámetro>): Botón para avanzar al siguiente registro.

• FMENU.ANTERIOR_REGISTRO(<parámetro>): Botón para retroceder al registro anterior.

• FMENU.LLAMADA(<parámetro>): Botón de hipervínculo a otro programa.

• FMENU.ENTER_QUERY(<parámetro>): Botón de entrada de consulta.

• FMENU.EXECUTE_QUERY(<parámetro>): Botón de ejecutar consulta.

• FMENU.SALIR(<parámetro>): Botón de salir del programa.

• FMENU.CREAR_REGISTRO(<parámetro>): Botón para crear registro nuevo.

• FMENU.EXCEL(<parámetro>): Botón de envío de contenido del bloque a Excel.

<parámetro>: Espera un valor booleano, es decir TRUE activa y FALSE desactiva.

85

Notas Importantes sobre el Menú y la Botonera

Salvo raras excepciones el menú que tiene el programa se debe dejar con el menu6 estándar.

Para los botones particulares de cada programa como por ejemplo lanzar proceso se ha habilitado una barra

de botones vertical con 26 botones y 14 en la horizontal, que se pueden habilitar y usar con los siguientes

procedimientos:

Procedimiento para hacer visible y activar a la vez el botón:

• FMENU.BOTON_VERTICAL_VISIBLE(<boton>,<etiqueta>,<icono>): Hace visible un

botón. NOTA: debe de utilizarse siempre en el disparador INICIO

o <boton>: Los botones van desde el B01 a B26 (para la botonera vertical) y del H01 al

H14 (para la botonera horizontal).

o <etiqueta>: Etiqueta que aparecerá cuando el usuario pasa el ratón por encima del botón.

o <icono>: El icono será un fichero .ico que estará en el path de UI_ICON.

• FMENU.BOTON_VERTICAL_ACTIVAR(<boton>,<como>): Procedimiento para desactivar

o activar el botón después de que ya sea visible:

o <como>: Es un valor booleano, TRUE activa y FALSE desactiva.

Para gestionar el pulsado de cada uno de los botones se usará el disparador OPCION_MENU, se identificará

el botón pulsado por el valor del parámetro OPCION_MENU.

OPCMENU.OPCION_MENU(:global.codigo_empresa, :parameter.opcion_menu);

IF :parameter.opcion_menu = ‘B01’ THEN

 --CODIGO PARTICULAR PARA ESE BOTON

END IF;

IMPORTANTE: Al nombre del fichero no se le pasará la extensión, ya que la asume automáticamente.

MUY IMPORTANTE:

• Los botones se deben declarar de forma correlativa comenzando en el B01 y sin dejar huecos, es

decir, no se puede usar el B05 sin previamente haber hecho visibles con

FMENU.BOTON_VERTICAL_VISIBLE los B01, B02, B03 y B04. Si no se cumple esto al

añadir plug-ins al bloque se producirán funcionamientos totalmente inesperados.

• Solo se pueden usar los botones verticales B01 .. B26 dentro del fuente única y exclusivamente si

han sido creados dentro del fuente, es decir, si no se ejecuta en el disparador INICIO un

FMENU.BOTON_VERTICAL_VISIBLE('B01', ... dentro del fuente nunca se puede hacer

referencia a 'B01'.

En el caso de que si un botón se inicializa con una determinada condición, por ejemplo el sector de la

empresa, el código que ejecute en OPCION_MENU y en las llamadas a

FMENU.BOTON_VERTICAL_ACTIVAR tiene que ir también la misma condición.

Por ejemplo si se inicializa un botón con esta condición:

IF pkpantallas.sector_empresa(:global.codigo_empresa) = 'XX' THEN

 FMENU.BOTON_VERTICAL_VISIBLE('B05', 'Borrar Todo', 'produccion');

END IF;

El código que va en el disparador OPCION_MENU tiene que ir dentro de esa misma condición, es decir:

IF :parameter.opcion_menu = 'B05' AND pkpantallas.sector_empresa(:global.codigo_empresa) = 'XX' THEN

-- codigo

END IF;

También en el caso de activar o desactivar por código el botón hay que meter esa condición, por ejemplo:

IF pkpantallas.sector_empresa(:global.codigo_empresa) = 'XX' THEN

 IF :b1.condicion = 'S' THEN

 FMENU.BOTON_VERTICAL_ACTIVAR('B05', TRUE);

 ELSE

 FMENU.BOTON_VERTICAL_ACTIVAR('B05', FALSE);

 END IF;

END IF;

86

Una buena práctica es añadir los botones definidos en el fuente con

FMENU.BOTON_VERTICAL_VISIBLE en la pestaña “Botonera” del mantenimiento de programas.

• Etiqueta: Etiqueta que se mostrará cuando el usuario pase el ratón por encima del botón.

• Código a ejecutar antes del código interno del programa: Código que se ejecutará antes de que

el programa ejecute el código asociado a ese botón en el disparador OPCION_MENU. Si este

código ejecuta :p_parar_ejecucion := ‘S’; no se llegara a ejecutar el código que se encuentra en el

código fuente del programa.

De esta forma es posible personalizar el programa para autorizar o desautorizar por perfiles el uso de esos

botones, aparte de cambiar la etiqueta estándar o añadir un código pl/sql a ejecutar antes del código del

programa.

Generar Logs de traza.

Si se quiere que un programa vaya generando una traza para su posterior comprobación se usará el paquete

PANTLOG contenido en la librería PKLIBPNT. La traza consistirá en líneas de texto que se grabarán en

un fichero plano.

NOTA: Antes era necesario utilizar PANTLOG.INICIALIZAR en el disparador INICIO. Ahora este paso

ya no es necesario, el log se inicializa de forma automática.

IMPORTANTE: La variable DIRECTORIO_LOG se define en el archivo libra.env (o el indicado en

formsweb.cfg) y el archivo de traza será generado en el servidor de aplicaciones. Si el usuario tiene

autorizado (configuración por usuario / empresa) la visualización de registro de Log en “Acerca de…”

podrá abrir directamente la traza haciendo doble click sobre el campo “Directorio LOG” del “Acerca de…”.

Para grabar una línea al final del archivo de log se usará la instrucción PANTLOG.ESCRIBE(<linea>).

En el parámetro línea será el texto que se quiere que se grabe.

En PANTLOG.ESCRIBE se puede indicar un segundo parámetro “PANTLOG.ESCRIBE(<linea>,

<nivel>)” para indicar en qué nivel de LOG debe ser escrita la línea en la traza. Los niveles de log posibles

son (en negrita el código de <nivel>):

• Errores: Funcionamiento normal, sin indicar el parámetro de nivel de log. Siempre se escribe en

el LOG.

• Advertencias: Registra los niveles anteriores + los marcados como 'WARN': Está pensado para

registrar situaciones que puedan registrar algún tipo de problema en la ejecución del programa,

pero que no impiden que el programa se ejecute

• Información: Niveles anteriores + 'INFO': Está pensado para registrar valores de

parametrización.

87

• Depuración: Niveles anteriores + 'DEBUG': Está pensado para registrar valores de variable,

funciones que se ejecutan, …, es decir, el nivel máximo de detalle. Este nivel no incluye ningún

evento generado por el entorno.

• Todos: Niveles anteriores + eventos del entorno. No se puede usar en ningún programa, ya que

está reservado de forma exclusiva para programas del entorno. Al activar este nivel de traza se

registran multitud de eventos del entorno, WHEN-VALIDATE-ITEM, WHEN-NEW-ITEM-

INSTANCE,

Para grabar un volcado de información del programa se llamará a

PANTLOG.GRABA_DUMP(‘<bloque>’, ‘VALORES’);

• <bloque>: Código del bloque del programa del que se quiere volcar información al archivo de

log. Si se pasa en blanco, es decir, NULL, se generará de todos los bloques del programa.

• ‘VALORES’: Valor fijo.

Por seguridad, al hacer un volcado, sólo se mostrará el valor de los campos que el usuario esté visualizando

en pantalla. Como excepción es que el usuario sea superusuario, o Libra se esté

ejecutando en modo a prueba de fallos (modo que sólo un superusuario puede hacerlo).

Durante la ejecución del programa, se puede volcar información de los bloques al

archivo de traza, se puede hacer con la opción de menú (Archivo -> Volcar informe a

LOG).

El fichero solo se generará si está activada la traza, es decir, la variable global

:global.traza contiene el valor SI. Desde el menú de Libra la puede activar el

superusuario en Especial -> Activa Traza y se desactiva en Especial -> Desactiva Traza.

Una vez se activa la traza, se puede indicar el nivel de log, desde sólo errores a Todos.

En el archivo de Log también se guardan los Logs de LIBRA_LOG registrados en base

de datos.

El archivo de Log se puede abrir de forma rápida desde el “Acerca de…” de los

programas haciendo doble click sobre el campo “Directorio Log”.

Si se activa la traza a todos los mensajes que muestre Libra, se les añadirá el campo

según el siguiente criterio (únicamente se concatenará uno, el primero de los 3 que tenga

valor):

• Campo que produce el error.

• Campo que está lanzando el evento.

• Campo en que se encuentra el cursor.

Ejemplo:

Logs de incidencias ocurridas en la base de datos

En el paquete PKPANTALLAS hay un procedimiento llamado LOG destinado a registrar incidencias

ocurridas en la base de datos. Se ejecuta mediante una transacción autónoma, por tanto, incluso si la

transacción que lo llama hace un ROLLBACK queda registrada la incidencia. El registro queda en una

tabla llamada LIBRA_LOG. Este procedimiento recibe 3 parámetros:

• Texto a registrar.

• Paquete desde el que lo estamos llamando.

• Punto dentro del paquete desde donde lo estamos llamando.

88

Esto es útil en paquetes de base de datos en donde capturamos el WHEN OTHERS (o se hace un RAISE

Salir) y devolvemos un error genérico, normalmente cuando pasa esto encontrar el problema es cosa de

locos, cuando la solución (por ejemplo) puede ser tan sencilla como ampliar un TABLESPACE.

Ejemplo: Si se llama desde el paquete SV en un WHEN OTHERS la forma de llamarlo sería:

• En el primer WHEN OTHERS: PKPANTALLAS.LOG (SQLERRM, 'SV', '1');

• En el segundo WHEN OTHERS: PKPANTALLAS.LOG (SQLERRM, 'SV', '2');

IMPORTANTE: Solo se debe usar donde realmente la incidencia es importante, no se debe usar para ir

dejando trazas de por donde pasa un programa ya que sobrecarga bastante.

Para guardar trazas se puede usar PKPANTALLAS.TRAZA con los mismos parámetros. Se debe de usar

únicamente dentro de procedimientos almacenados en la base de datos y se guarda también en la tabla

LIBRA_LOG, pero únicamente cuando en el menú de Libra está activada la traza.

Disparadores estándar

Los disparadores estándar son aquellos que ejecutan el mismo código en todos los programas, este código

está en la librería PKLIBPNT en el paquete DISPSTD.

Es recomendable que todos los disparadores ejecuten ese código, ya que si se hace una modificación en la

PKLIBPNT para añadir una nueva funcionalidad esta ya estará incluida en todos los programas que la usen

solo recompilando la librería.

Por ejemplo, si tenemos en un bloque el disparador WHEN-NEW-BLOCK-INSTANCE, a medida, es

recomendable poner en el disparador, aparte del código personalizado, una llamada al código estándar

DISPSTD.WHEN_NEW_BLOCK_INSTANCE.

Los disparadores estándar tienen el mismo nombre que los disparadores de Forms, pero con guiones bajos

en vez de guiones altos.

Particularidades

El código estándar de DISPSTD.NEW_RECORD_INSTANCE,

DISPSTD.WHEN_NEW_BLOCK_INSTANCE y DISPSTD.KEY_DELREC llevan implícito una llamada

al procedimiento POSTEAR, entonces si algún dato ha sido modificado (variable :system.form_status =

‘CHANGED’) se ejecutará un POST forzando la validación de todos los campos y registros pendientes de

validar.

Hay casos en el que no nos interesa que estos disparadores hagan un POST, pero si que ejecuten el resto

del código estándar, para ello podemos desactivar el POST del disparador poniendo antes de la llamada al

DISPSTD una llamada al procedimiento DISPSTD.DESACTIVAR_POSTEADO. El desactivado sólo

tendrá efecto en el próximo disparador DISPSTD.WHEN_NEW_RECORD,

DISPSTD.WHEN_BLOCK_INSTANCE, DISPSTD.KEY_DELREC.

Personalización Borrado y grabación.

Hay casos en los que hay que anular totalmente el disparador estándar, ya que la acción que hacen dependerá

de una pregunta al usuario, en estos casos es recomendable ver el código que ejecuta el disparador estándar

para no perder ninguna funcionalidad. Por ejemplo, si personalizamos el disparador KEY-EXIT hay que

poner en el código para cancelar la lista de valores, calculadora, ...

Para minimizar el caso en los que hay que anular el disparador estándar, existen dos disparadores a nivel

de formulario, para meter el código personalizado y no tener que cambiar nada de los disparadores estándar.

• ANTES_BORRAR: Se ejecuta antes de que el disparador estándar borre el registro y después de

que el usuario confirmase la pregunta de borrado.

• ANTES_GRABAR: Se ejecuta antes de que el disparador estándar ejecute el COMIT_FORM y

después de que el usuario que quiere grabar las modificaciones, tanto al pulsar el botón de grabar

como al pulsar el botón de salir y había modificaciones pendientes de grabar.

89

Impresión.

Impresión por FAX.

Si en un programa se quiere dar la opción de que el usuario seleccione impresión por fax se ejecutará

DISPSTD.ACTIVA_IMPRESION_FAX en el disparador INICIO. De esta forma en la lista de dispositivos

de salida se añade la opción Fax a las opciones Pantalla, Impresora, ...

La llamada a esa función únicamente añade la opción en la lista de dispositivos de salida, la lógica del envío

a fax tiene que estar en el programa en el botón BREPORT.IMPRIMIR.

Impresión multidestino.

En los programas siempre se va a lanzar en primer lugar la impresión que selecciona el usuario, pero por

personalización en código pl/sql de antes de imprimir o dentro del fuente se puede forzar a que la impresión

se haga en otros destinos de forma simultánea.

Para habilitar el multidestino hay que ejecutar una única vez el procedimiento

pkpantallas.inicializa_multidestino_report y luego por cada destino al que se quiera enviar el report hay

que ejecutar: pkpantallas.add_multidestino_report(p_informe, p_dispositivo, p_tipo_fichero,

p_imp_asincrona, p_imprimir_por, p_impresora, p_destino, p_email):

• p_informe: Se puede indicar otro informe a imprimir, si se pasa a NULL se imprimirá el informe

seleccionado por el usuario.

• p_dispositivo: Puede recibir los siguientes valores: SCREEN, PRINTER, FILE, MAIL, FAX,

GESTDOC.

• p_tipo_fichero: Se usa para cuando el dispositivo genera un archivo (FILE, MAIL, FAX y

GESTDOC) e indica el tipo de archivo a generar, recibe los siguientes valores: PDF, XLS, HTML,

RTF, XML

• p_imp_asincrona: Indica al servidor si la impresión se ha de ejecutar en modo síncrono (S) o

asíncrono (N).

• p_imprimir_por: Se usa únicamente para indicar si se imprime por la impresora de WINDOWS,

en ese caso hay que pasar el valor WINDOWS.

• p_impresora: En caso de que el destino sea PRINTER en este parámetro se pasa el código de la

impresora lógica por la que se ha de imprimir. Si p_imprimir_por recibe el valor WINDOWS en

este parámetro se pasará WINDOWS_V para indicar que imprima por la impresora asociada de

Windows en vertical Y WINDOWS_H para horizontal.

• p_destino: Se usa para indicar la ruta y nombre de archivo a generar cuando el dispositivo está

asociado a archivo (FILE, MAIL, FAX, GESTDOC).

• p_email: Dirección de correo electrónico que se usarán cuando el dispositivo sea MAIL.

90

Crear un formulario desde cero

Nos basaremos inicialmente en el formulario base “manbase6.fmb”, este formulario ya incorpora el

componente FORMULARIO_BASE de la librería de objetos objetospant.olb.

Antes de nada, para no sobrescribir el formulario base ya lo grabamos con el nombre definitivo que vaya a

tener el programa.

Añadir un nuevo bloque de mantenimiento de una tabla:

• Incorporar un nuevo bloque usando el asistente.

• Seleccionamos tabla o vista.

• Indicamos la tabla y los campos que vamos a usar.

• En el asistente de diseño, añadimos los campos en el lienzo CANVAS_BASE y en el tab TAB0.

• Indicamos los campos que van a estar visibles en el mantenimiento.

• Poner la propiedad “Clave Primaria” a SI de todos los campos que forman la clave primaria de la

tabla asociada al bloque. (*)

• Activar la propiedad del bloque “Forzar Clave Primaria” si la tabla asociada tiene clave primaria.

(*)

(*) Solo si el programa no tiene numeración automática, como por ejemplo una entrada de albaranes, donde

el número (parte de la clave primaria) se obtiene de un contador de forma automática.

El punto de asignar la clave primaria de muy importante, ya que la validación estándar si se encuentra con

un campo que es clave primaria busca el resto de los campos que forman la clave primaria y si todos tiene

valor comprueba si el registro ya existe, antes de que al usuario se le pidan más datos.

Para el punto de la validación de la clave primaria es importante que cuando se asigna algún valor por

defecto de la clave primaria, por ejemplo, el valor para el código de la empresa no se realice en el disparador

PRE-INSERT ya que si se hace en ese momento nunca todos los campos correspondientes a la clave

primaria van a tener valor al ser validado alguno de ellos, por tanto, es recomendable asignarlos en el

disparador WHEN-CREATE-RECORD, pero sin anular la funcionalidad estándar del mismo.

Ejemplo:

DISPSTD.WHEN_CREATE_RECORD;

:bloque.codigo_empresa := :global.codigo_empresa;

Poner el título del programa en la etiqueta de la pestaña TAB0 de CANVAS_BASE.

Poner a cada campo la etiqueta en castellano correspondiente en la propiedad Prompt. Nunca usar etiquetas

de texto normales ya que no se pueden modificar de forma dinámica y por tanto no se pueden traducir.

Tampoco se debe de usar marcos con etiqueta, ya que al no poder cambiarse de forma dinámica tampoco

se pueden traducir.

Borramos el marco que le pone el asistente de diseño al bloque.

Añadir al bloque la clase de propiedad correspondiente.

• CLASE_BLOQUE: Si solo se visualiza un solo registro.

• CLASE_BLOQUE_SCROLL: Si el bloque visualiza varios registros.

Añadir la clase correspondiente a los elementos visualizados:

• Elementos de texto

o CLASE_TEXT_ITEM: El campo sólo se visualiza un registro.

o CLASE_TEXT_ITEM_GRID: El campo está en un multiregistro.

• Elementos de fecha

o CLASE_DATE_ITEM: El campo sólo se visualiza un registro.

o CLASE_DATE_ITEM_GRID: El campo está en un multiregistro.

• Elementos numéricos

91

o CLASE_TEXT_ITEM_NUMBER: El campo está en un bloque de 1 registro.

o CLASE_TEXT_ITEM_NUMBER_GRID: Si el campo es multiregistro.

• Elemento de tipo casilla de verificación.: CLASE_CHECK_BOX.

• Botones de Radio: CLASE_RADIO_GROUP

• Elementos de lista de selección: CLASE_LIST_ITEM

• Botones: CLASE_BUTTON

• Lienzos y pestañas: CLASE_PAGE.

• Ventanas: CLASE_VENTANA

Modificar la propiedad “Grupo de atributos visuales del Prompt” dependiendo de las dos posibilidades

siguientes:

• Campo Obligatorio: Atributo visual CAMPO_OBLIGATORIO_PROMPT.

• Campo Opcional: Atributo visual CAMPO_OPCIONAL_PROMPT.

Si el campo se ha creado desde el asistente seguramente tenemos que volver a heredar las propiedades

Alineamiento del prompt y Estilo de Visualización del Prompt, pulsando sobre la propiedad. Este paso se

puede hacer con varios items seleccionados.

Para el alineamiento del prompt en campos que no están en un grid de datos, es decir, no son multiregistro,

el borde del anexo del prompt es fin, por tanto, inicialmente van a aparecer a la derecha del campo, lo que

hay que hacer es poner el prompt a la izquierda y que se modifique la propiedad de desplazamiento del

anexo del prompt y dejando la propiedad borde del anexo del prompt con el valor “fin”. Esto es necesario

para que las etiquetas sigan perfectamente alineadas después de ser modificadas en otro idioma.

MUY IMPORTANTE: Los campos que sean de descripción y que no pertenezcan a la tabla base del

bloque les pondremos el mismo nombre que el campo, pero anteponiendo el prefijo ‘D_’.

También hay que acordarse en las descripciones de poner el tamaño correcto para el campo descripción,

acorde con el campo en la tabla en donde se almacena dicha descripción. Siempre es mejor pasarse de

tamaño que quedarse corto.

A los campos de visualización les añadimos la clase correspondiente.

• CLASE_DISPLAY_ITEM: Si en el campo solo se visualiza un registro.

• CLASE_DISPLAY_ITEM_GRID: Si el campo es multiregistro.

En vez de usar el disparador POST-QUERY para cargar el valor, usaremos el campo “Nombre Columna

Consulta” del mantenimiento de programas, usando el asistente (lista de valores) o introduciendo la SQL

necesaria de la forma (SELECT <campo> FROM <tabla> WHERE <condición>), de esta forma se puede

ordenar y filtrar por este campo.

Si no se utiliza el asistente para asociar la obtención de la descripción a una lista de valores y el campo

puede ser NULL, podemos asignar a esta propiedad la siguiente sentencia SQL: DECODE(<campo>,

NULL, NULL, (SELECT <campo> FROM tabla WHERE <condición>)). De esta forma si el campo es

NULL directamente no hace nada, y si tiene valor va a buscar la descripción a la tabla correspondiente.

92

Esta forma de obtener la descripción da como principal ventaja que el usuario puede hacer filtros pulsando

F7 y F8 y también se puede hacer una ordenación del bloque de datos por este campo.

Para más detalle ver el apartado: Campos de visualización de descripciones.

Ejemplo: DECODE(unidad_codigo1,NULL,NULL,(SELECT descripcion FROM unidades_almacen

WHERE codigo= articulos.unidad_codigo1))

Colocar campos en la pantalla.

Para alinear los campos multiregistro los alinearemos al final y apilando horizontalmente. Una vez apilados

horizontalmente los separaremos con el teclado un punto

Disparadores personalizados

Trataremos de poner todos los disparadores a nivel de bloque, controlando de que ítem viene el evento

mediante la variable de sistema :system.trigger_item.

El orden de navegación de los bloques será el mismo que especificamos en el navegador de objetos del

formulario, por tanto, el primer bloque navegable va a ser el primero que aparezca en el navegador de

objetos.

IMPORTANTE: Siempre que usemos un disparador que tenga una funcionalidad estándar, deberemos

dejar la lógica necesaria para que no se pierda esa funcionalidad, por ejemplo, si en el disparador WHEN-

NEW-RECORD-INSTANCE, necesitamos desactivar un campo, deberemos dejar una llamada al

procedimiento DISPSTD.WHEN_NEW_RECORD_INSTANCE.

Ejemplo:

DISPSTD.WHEN_NEW_RECORD_INSTANCE;

IF :bloque.campo = 1 THEN

 Set_Item_Property(‘BLOQUE.CAMPO2’, ENABLED, PROPERTY_FALSE);

END IF;

Modificación de propiedades de campos (FITEM)

Normalmente las propiedades de los items se realizarán con la instrucción Set_Item_Property, excepto las

siguientes (que a ser posible se usará el paquete FITEM).

• FITEM.VISIBLE(p_campo => <campo>, p_como => <parámetro>, p_activado => <parámetro>,

p_navegable => <parámetro>, p_modificable => <parámetro>): Hace visible u oculta un Item.

Cuando se hace visible además lo hace activo salvo que se indique p_activado => FALSE,

navegable por teclado salvo que se indique p_navegable => FALSE y modificable salvo que ese

indique p_modificable => FALSE.

• FITEM.ACTIVADO(p_campo => <campo>, p_como => <parámetro>, p_navegable =>

<parámetro>, p_modificable => <parámetro>): Activa o desactiva un Item. Cuando se activa

además lo hace navegable por teclado salvo que se indique p_navegable => FALSE y modificable

salvo que se indique p_modificable => FALSE.

• FITEM.MODIFICABLE(<campo>, <parámetro): Activa o desactiva la modificación de un

campo, tanto en registros existentes como en los nuevos.

• FITEM.OBLIGATORIO(<campo>, <parámetro>): Activa o desactiva la obligatoriedad de que el

usuario introduzca un valor para el campo, también cambia el atributo visual del prompt, por

ejemplo, si se pone como obligatorio pone el Prompt en negrita.

<campo>: Cadena que contiene BLOQUE.CAMPO. Ejemplo: 'B8.ALMACEN'.

<parámetro>: Espera un booleano, es decir TRUE activa y FALSE desactiva.

NOTA: El uso de los parámetros p_activado, p_navegable, p_modificable hará que el fuente únicamente

se pueda utilizar en versiones de entorno 6.4.8 o superior.

93

Campos de primary key de un bloque.

Si en un bloque a los campos que pertenecen a la clave primaria les activamos la propiedad de primary key

a los campos que forman la clave primaria (en el bloque es recomendable activar la propiedad “Forzar

Clave Primaria”, pero no es obligatorio para esto) al estar introduciendo el registro cuando el usuario le da

valor al último campo que forma la clave primaria se comprueba si ese registro ya existe en la base de datos,

si ya existe se muestra un mensaje y no se espera a que termine de meter el registro completo para avisarle.

Para que funcione correctamente hay que tener muy en cuenta lo que se explicó en el apartado “Crear

formulario desde cero” sobre los valores iniciales de los campos de la clave primaria asignarlos en el

WHEN-CREATE-RECORD y no en el PRE-INSERT.

Campos Desde / Hasta

Normalmente en pantallas de filtro hay campos en los que se pide un valor desde y un valor hasta. Si es un

campo que de forma normal el usuario va a especificar un mismo valor en el desde que en el hasta ya le

proponemos el valor hasta igual que el desde en el momento de validar el campo desde.

Evitaremos mostrar mensajes de que el campo desde es mayor que el campo hasta, lo que haremos al validar

el campo desde es comprobar si el hasta está vacío o es inferior que el desde, en ese caso asignamos al

campo hasta el mismo valor que el desde. Si estamos validando el campo hasta y tiene el valor desde valor

y este valor es mayor que el hasta le asignaremos al campo desde el valor del hasta.

Ejemplo de validación de un campo desde:

IF :b1.hasta IS NULL OR :b1.hasta < :b1.desde THEN

 :b1.hasta := :b1.desde;

 :b1.d_hasta := :b1.d_desde;

END IF;

Ejemplo de validación de un campo hasta:

IF :b1.desde IS NOT NULL AND :b1.desde > :b1.hasta THEN

 :b1.desde := :b1.hasta_cliente;

 :b1.d_desde := :b1.d_hasta;

END IF;

Máscaras

Una máscara será del tipo FM999G999G990D9990, en donde las G indican en donde irá el separador de

millar, la D en donde irá el separador de decimales, el FM indica que si el importe es negativo que ponga

el signo ‘-‘ pegado al primer número comenzando por la izquierda.

Las máscaras para asignar a campos numéricos que contengan información de un importe de una

determinada divisa o un importe de una cantidad de almacén deben de usar el paquete PKMASCARAS.

Este paquete tiene las siguientes funciones que devuelven la máscara adecuada para cada caso:

• PRECIOS(p_parte_entera, p_parte_decimal, p_divisa): Devuelve la máscara con los decimales

adecuados al valor de DECIMALES_PRECIOS de la tabla DIVISAS para la divisa identificada

por p_divisa. Para precios en la divisa de la empresa en la que está validado el usuario lo más

recomendable es poner en el mantenimiento de programas en la propiedad Máscara del

campo el valor IMP.

• IMPORTES(p_parte_entera, p_parte_decimal, p_divisa): Devuelve la máscara con los decimales

adecuados al valor de DECIMALES_SIGNIFICATIVOS de la tabla DIVISAS para la divisa

identificada por p_divisa. Para importes en la divisa de la empresa en la que está validado el

usuario lo más recomendable es poner en el mantenimiento de programas en la propiedad

Máscara del campo el valor IMP.

• CANTIDADES(p_parte_entera, p_parte_decimal, p_empresa): Devuelve la máscara con los

decimales adecuados al valor de DEC_CANTIDAD de la tabla AL_PARAM01 para la empresa

identificada por p_empresa. NOTA: Si no existe registro en AL_PARAM01 devolverá una

94

máscara con los decimales indicados en p_parte_decimal. Para las cantidades lo más

recomendable es poner en el mantenimiento de programas en la propiedad Máscara del

campo el valor CTD.

NOTA: Al estar la función de cálculo de máscaras en Base de Datos se puede usar tanto en Forms, Reports,

etc. En Reports se puede sacar directamente como una columna más de la sentencia, en una columna de

fórmula, etc.

Ejemplos de máscaras

Forms:

DECLARE

 v_mascara VARCHAR2(50);

BEGIN

 v_mascara := PKMASCARAS.PRECIOS(15, 4, :parameter.divisa_empresa);

 Set_Item_Property(‘BLOQUE.CAMPO’, FORMAT_MASK, v_mascara);

END;

Reports:

FUNCTION <función> IS

 v_mascara VARCHAR2(50);

BEGIN

 v_mascara := PKMASCARAS.PRECIOS(15, 4, :p_divisa);

 srw.attr.mask := srw.formatmask_attr;

 srw.attr.formatmask := v_mascara;

 srw.set_attr(0,srw.attr);

 RETURN (TRUE);

END;

Funciones Varias

• BORDEN.MENU_ESTABLECER_ORDEN('REFRESCO'): Vuelve a ejecutar consulta en el

bloque en que se encuentra el cursor, respetando los filtros aplicados por el usuario y vuelve a

posicionarse en el mismo registro y campo en el que se encontraba el cursor.

95

Control de Errores

Oracle para la gestión de errores tiene las excepciones y los errores ORA. En la aplicación se podrían

codificar errores ORA entre el -20999 y el -20000 para gestión de errores personalizados lo que nos deja

1000 errores para ser codificados.

Tenemos que usar un sistema que permita estos puntos:

• Sea simple.

• Rápido de implementar.

• Que se genere justo en el punto en el que se detecta el error.

• Los errores le lleguen al usuario y traducidos si es necesario.

• Que los puedan capturar las alertas.

• Que sea gestionable

Para ello el entorno se ha reservado el código de error ORA-20100 para tratar cualquier error que pueda

producirse en procedimientos almacenados en base de datos.

Cuando se produzca un error ORA-20100, el entorno lo gestionará de forma de que llegue al usuario o al

motor de alertas de forma clara.

Cuando en el código se quiera lanzar un error hay que poner un

RAISE_APPLICATION_ERROR(pkerr.c_ex_error_rae, ‘Texto codificado del error’);

En ‘Texto codificado del error’ tiene que ir con una codificación que pueda entender el entorno, por lo que

no se puede meter un texto directamente y en vez de eso se llamará a la función

PKERR.GENERA_MENSAJE_RAE. Esta función tiene los siguientes parámetros:

Obligatorios: Necesarios para mostrar el mensaje al usuario:

• p_tipo_mensaje: Tipo del mensaje codificado en Libra.

• p_codigo_mensaje: Código del mensaje dentro del tipo indicado en p_tipo_mensaje. Únicamente

deberían de usarse mensajes que tengan un único botón, ya que desde base de datos no se puede

interpretar si el usuario pulsa uno u otro botón.

Opcionales:

• p_texto_ampliacion: Texto que se concatenará al mensaje. Este texto se intentará traducir por lo

que hay que evitar concatenar valores fijos variables, por ejemplo: ‘Artículo: 1345451NL’. Lo

mejor es meter códigos de sustitución, por ejemplo: ‘Artículo: {art}’, luego mediante las variables

se podrá indicar que se sustituya {art} por un valor, pero esa sustitución la hace después de hacer

la traducción.

• p_codigo_excepcion: Cuando se trata posteriormente la excepción se puede utilizar los valores

indicados en p_tipo_mensaje y p_codigo_mensaje, pero esos mensajes pueden ser muy genéricos

y utilizados en varios puntos. Si se indica p_codigo_excepcion, luego se podrá utilizar este código

para tratar la excepción y determinar de forma más precisa el origen de esta, por lo que el valor

indicado debería ser un valor único, como por ejemplo estos valores:

o ex_stock_negativo

o ex_bloqueo_inventario

o ex_cliente_bloqueado

• p_texto_info_adicional: Cualquier información adicional que se quiera registrar. Esta

información no se mostrará al usuario y simplemente se meterá en el texto del error, de forma que

al tratar el error con pkpantallas.log se guardará en LIBRA_LOG o al ser capturado por la alerta

en el LOG de la alerta. Es interesante guardar el valor de variables que puedan ayudar al equipo

de soporte o a desarrolladores a poder determinar el motivo de que se hubiese producido el error

que se está gestionando.

• p_variableX (dónde X es un valor entre 1 y 9): Permite indicar un código de variable que se

encuentra en el texto del mensaje o en p_texto_ampliacion y que debe de ser reemplazado, por

ejemplo, sin en p_texto_ampliacion se indica ‘Artículo {art}’, en p_variableX se asignará el valor

‘{art}’.

96

• p_valor_variableX (dónde X es un valor entre 1 y 9): Indica el valor por el que tiene que ser

sustituida la variable en el texto del mensaje, por ejemplo, si en p_variable se indica {art}, se

asignará el valor que contenga la variable o parámetro con el código de artículo. También se puede

usar con p_etiqueta_variable, tal y como se explica a continuación.

• p_etiqueta_variableX (dónde X es un valor entre 1 y 9): Se pueden añadir valores al texto del

mensaje de forma que se añaden únicamente cuando el p_valor_variableX es no nulo. El texto

indicado se intentará traducir al idioma del usuario. Esto permite añadir trozos de texto al mensaje

según una variable tenga o no valor, por ejemplo: p_etiqueta_variable1 => ‘Nº Lote Interno’,

p_valor_variable1 => p_numero_lote_int. En el caso de que p_numero_lote_int sea NULL no

se añadirá nada al mensaje, pero si p_numero_lote_int tiene el valor ‘XXX123’ se añadirá al

mensaje que le llega al usuario: , Nº Lote Interno: XXX123

En PL/SQL Developer (configuración específica de Edisa) hay plantillas para meter este código de forma

rápida:

RAE_

RAISE_APPLICATION_ERROR(pkerr.c_ex_error_rae, pkerr.genera_mensaje_rae(p_tipo_mensaje => '', p_codigo_mensaje

=> ''));

ARAE_

pkpantallas.assert(

 p_condicion => ,

 p_mensaje => pkerr.genera_mensaje_rae(p_tipo_mensaje => '', p_codigo_mensaje => ''),

 p_paquete => $$PLSQL_UNIT,

 p_punto => $$PLSQL_LINE,

 p_cod_excepcion => pkerr.c_ex_error_rae);

Ejemplo:

raise_application_error(pkerr.c_ex_error_rae,

 pkerr.genera_mensaje_rae(p_tipo_mensaje => 'A_STK',

 p_codigo_mensaje => 'NO_HAY',

 p_etiqueta_variable1 => 'Artículo',

 p_valor_variable1 => p_articulo,

 p_etiqueta_variable2 => 'Ubicación',

 p_valor_variable2 => p_ubicacion,

 p_etiqueta_variable3 => 'Palet',

 p_valor_variable3 => p_palet,

 p_etiqueta_variable4 => 'Nº Serie Interno',

 p_valor_variable5 => v_numero_serie_int,

 p_etiqueta_variable6 => 'Nº Lote Interno',

 p_valor_variable6 => p_numero_lote_nt,

 p_texto_info_adicional => 'lote_int: ' || v_lote_int));

Cuando se lanza ese RAISE_APPLICATION_ERROR se fuerza un ORA-20100 con un texto codificado

en SQLERRM. La función o procedimiento que lanza ese RAISE_APPLICATION_ERROR deberá tener

controlada la excepción WHEN OTHERS de la siguiente forma:

EXCEPTION

 WHEN OTHERS THEN

 pkpantallas.log(sqlerrm || ‘, lista de información a trazar’, $$PLSQL_UNIT, ‘NOMBRE’);

 RAISE;

END;

Ejemplo:

97

Ese pkpantallas.log y el RAISE; en el WHEN OTHERS es vital para que el entorno pueda decodificar el

error para mostrárselo al usuario de forma clara.

En los WHEN OTHERS deben de meterse en el log todos los parámetros de la llamada a la función y

cualquier otra variable que se considere importante. Para hacer esto se debe de utilizar el programa

U_GENCODIGO de Libra en el qué indicando la especificación de la función nos dará el código a

introducir para finalizar el procedimiento o la función.

En la unidad de programa llamadora, si fuese necesario se podría gestionar el error y tratarlo, por ejemplo,

se está moviendo almacén de 30 artículos y uno no tiene stock, con lo que lanzará la excepción de que no

hay stock, pero podría darse el caso de que el programa llamador sabe como gestionar eso y pueda mover

el almacén de los 29 restantes y luego indicarle al usuario los que no ha podido realizar. Eso lo sabe la

unidad de programa que llama al procedimiento de mover almacén, pero eso unidad de programa no tiene

qué saber que quien le pide mover almacén sabe gestionar ese error, por lo que el tratamiento ahí es

exactamente igual, si no hay stock se lanza una excepción con el mensaje A_STK – NO_HAY y el código

de excepción “ex_stock_negativo”.

El programa llamador para gestionarlo tendrá que meter el control de la excepción y tratarla:

BEGIN

 llamada_a_mover_almacen();

EXCEPTION

 WHEN pkerr.ex_error_rae THEN

 IF pkpantallas.codigo_error_rae() = 'A_STK-NO_HAY' THEN

 pkpantallas.limpia_error_rae();

 -- Tratar el error como se considere oportuno.

 --...

 --...

 ELSE

 RAISE;

 END IF;

END;

• Con WHEN pkerr.ex_error_rae THEN se captura el error lanzado con cualquier

RAISE_APPLICATION_ERROR(pkerr.c_ex_error_rae, ‘XXXX’);

98

• Con pkpantallas.codigo_error_rae() nos indica el tipo + mensaje asociado al error

PKERR.EX_ERROR_RAE.

• Si es el error que se quiere gestionar hay que ejecutar pkpantallas.limpia_error_rae() para

indicarle al entorno que vamos a tratar el error y que se olvide de él.

• Si no es un código de error conocido y que se pueda gestionar se propagará con RAISE;

También se podría utilizar el código de excepción indicado (si no se indicó será igual que

pkpantallas.codigo_error_rae).

BEGIN

 llamada_a_mover_almacen();

EXCEPTION

 WHEN pkerr.ex_error_rae THEN

 IF pkpantallas.codigo_excepcion_rae() = 'ex_stock_negativo' THEN

 pkpantallas.limpia_error_rae();

 -- Tratar el error como se considere oportuno.

 --...

 --...

 ELSE

 RAISE;

 END IF;

END;

El texto de un error SQERRM se puede traducir para que sea entendible para los usuarios con

pkpantallas.texto_error_rae(p_mensaje => sqlerrm);

Al ser errores gestionados por el entorno, desde la configuración del mensaje se puede indicar como debe

de comportarse sobre el registro en LIBRA_LOG de la excepción, ya que una excepción de que no hay

stock podría ser que no interese que se registre en LIBRA_LOG.

En “Mensajes” y “Mensajes Personalizados” se puede indicar el comportamiento mediante el campo

“Bloquear LOG en excepciones”

Los valores posibles son:

• No: Se graba LIBRA_LOG en todos los puntos en los que se capture la excepción.

• Sí – Transformar en Advertencia: No se graban en LIBRA_LOG, pero si está la traza activada

se registran como WARNINGS.

• Sí – Excepto en el primer punto de captura: En la primera función o procedimiento que capture

la excepción grabará en LIBRA_LOG, el resto son transformadas a WARNINGS que se

registrarán si está la traza activa.

99

Nomenclatura de SQLS

Siempre que se haga un INSERT en una tabla se indicarán todos los campos que se están insertando, incluso

si estamos metiendo valor a todos los campos, ya que en el momento de hacer la SQL vemos unos campos

en la tabla, pero nadie nos asegura que más adelante (antes de sacar la versión) se añadan nuevos campos a

esa tabla:

• Ejemplo Incorrecto: INSERT INTO tabla VALUES (v1, v2, ..., vn);

• Ejemplo Correcto: INSERT INTO tabla (campo1, campo2, ... campon) VALUES (v1, v2, ..., vn);

Comprobaremos que todas las líneas del sql están finalizadas con punto y coma (también sirve poner en la

línea siguiente una barra /).

Toda secuencia de INSERT, UPDATE, DELETE llevará un COMMIT. A las sentencias DDL (es decir

aquellas que cambian una estructura de la base de datos CREATE, DROP, ALTER, REPLACE) no hace

falta hacer COMMIT ya llevan uno implícito.

Los nombres de las SQLS deben ser de la siguiente forma:

El nombre del objeto cuando la SQL sea de (En la versión solo saldrá la versión más reciente del objeto.

• Procedimiento.

• Función.

• Paquete

• Vista

• Trigger

Nombre del objeto más un sufijo (tal y como se genera desde libra) cuando la sql sea de (En la versión solo

saldrá la versión más reciente del objeto, no hace falta mandar toda la historia de modificaciones)

• Programa: Nombre del programa + _PR

• Lista de valores: Nombre de la lista de valores + _LV

• Mensaje: Código del mensaje + _MSG

Resto de SQLS: aa|mm|dd|nm|ce|md|fn.sql

• aa: dos últimos dígitos del año.

• mm: mes (2dígitos).

• dd: día (2 dígitos).

• nm: numeración de las sqls del mismo día y módulo.

• ce: centro de Edisa:

o md: Madrid.

o ov: Oviedo.

o ou: Ourense

o vg: Vigo

o bc: Barcelona.

• md: módulo de libra:

o us: (Entorno)

o crm: (CRM)

o fi: (Financiero)

o cp: (Compras - Aprovisionamiento)

o al: (Logística - Almacén)

o fa: (Ventas - Distribución)

o pr: (Producción)

o ca: (Calidad)

o vh: (Mantenimiento SAT)

100

o prc: (Gestión de Proyectos)

o no: (Nóminas)

o pre: (Control de presencia)

o rh: (Recursos Humanos)

o gd: (Gestor Documental)

o mof: (Movilidad OFF-LINE)

o mon: (Movilidad ON-LINE)

o web: (Web)

o gal: (Servicios Galileo)

o ron: (Reporting ON-LINE)

o bi: (Business Inteligence)

• fn: funcionalidad de la SQL:

o mn (Menús).

o tb (Tablas). Modificación, creación, etc.

o pv (Procesos Varios). Todo tipo de procesos de actualización de datos, etc., que no entren

en los grupos anteriores.

Por ejemplo, si se cambia una tabla de facturación a fecha de hoy, y ya se han creado hoy 2 SQLS de

facturación en Vigo, el nombre quedaría así: 01011003vgfatb.sql

101

Notificación de errores en procesos desatendidos

La tendencia debería ser cada vez más a que las tareas se ejecuten sin ninguna intervención de usuarios,

pero esto plantea el problema de cómo alertar a los administradores del sistema o a ciertos usuarios de que

se están produciendo problemas y puedan solucionarlos.

Ahora mismo hay procesos de este tipo que en caso de fallo comienzan a grabar registros en LIBRA_LOG

produciendo que se dispare su tamaño y nadie se entera de que algo está fallando ya que casi nadie está

revisando de forma activa la tabla LIBRA_LOG en busca de problemas.

Los procesos desatendidos tienen que registrar un fallo deben de llamar a pk_notificaciones.notificar_error.

Este procedimiento recibe 4 parámetros:

• p_localizador: Es el código por el cual se identifica el error, por tanto, hay que implementar algo

que en el caso de que se produzca un mismo error se le asigne el mismo localizador para que la

gestión de la notificación se haga correctamente. NOTA: En el caso de pasar este parámetro a

NULL se usará como localizador la firma SHA1 del texto pasado en el parámetro p_mensaje y

en la pantalla de visualización de notificaciones pendientes a la descripción no le será concatenado

el localizador.

• p_mensaje: Texto que sea entendible para un humano que revise la notificación de error para que

pueda localizar y arreglar el problema en el menor tiempo posible. NOTA: Para dar posibilidad de

traducir algunas etiquetas dentro del mensaje dependiendo del idioma del usuario que lo esté

visualizando se pueden introducir las etiquetas entre el prefijo {<etq> y el sufijo </etq>}, lo que

esté entre esas etiquetas se intentará traducir al idioma del usuario. Por ejemplo: {<etq>Este texto

será traducido al idioma del usuario</etq>}

• p_tipo y p_codigo: Codificación de la notificación. Esta codificación debe de estar dada de alta

en el programa "u_param_notif" para que Libra sepa cómo tratarla, en caso de no estar dada de

alta simplemente se grabará un registro en LIBRA_LOG de la misma manera que si se hubiese

ejecutado pkpantallas.log.

Ejemplo:

pk_notificaciones_erp.notificar_error(v_servidor_dockers_error || '.' || p_peticion.id_galileo, v_texto_error,

'GALILEO', 'SERVICIO_DOCKERS_CAIDO');

Configuración de Notificaciones

102

En el programa u_param_notif se indicará por cada tipo + código de notificación lo siguiente:

• Descripción: Texto que se le añadirá al asunto de la notificación junto al código de localizador.

• Programa Solución: Cuando el usuario está visualizando la notificación por pantalla en Libra

tendrá un botón que abrirá el programa que está configurado. Este campo es opcional.

Lista de Operaciones a realizar para realizar la notificación

Están implementadas 2 operaciones posibles:

• ALERTA: Pondrá en cola una alerta para que realice la notificación por correo electrónico a los

destinatarios parametrizados en esa alerta. Al indicar este tipo se mostrará el campo "Alerta" para

poder indicar el número de alerta a ejecutar.

• LIBRA_LOG: Registra en la tabla LIBRA_LOG una entrada.

Estas operaciones no son excluyentes, es decir, si se configura ALERTA y LIBRA_LOG realizará las 2 y

lo hará según lo que se configure en los campos Escala Tiempo + Frecuencia Según "Escala Tiempo".

Si se ha lanzado la notificación y antes de que pase la frecuencia indicada de notificación, vuelve a llegar

otra notificación no será lanzada, simplemente se registra aumentando el número de ocurrencias.

En la configuración de la notificación se puede indicar a qué Perfiles / Usuarios / Equipos CRM que se

deben de notificar al entrar en Libra en el caso de que exista alguna notificación abierta de ese tipo + código.

En el caso de que un usuario que se valide en Libra y tenga notificaciones que deben de serle notificadas

se le abrirá el programa de notificaciones de forma automática al entrar, desde este programa ya podría

marcarla como solucionada o ejecutar el programa que esté configurado como "Programa Solución".

Una vez dentro de Libra, desde cualquier "Acerca de..." se puede ir a ese programa de notificaciones.

103

Generación de hojas de cálculo

Para generar hojas de cálculo desde Forms disponemos la librería PKLIBXLS.PLL. Su objetivo es generar

de forma sencilla hojas de cálculo a partir de SQLS.

También se pueden generar hojas de cálculo desde Códigos PL/SQL, el funcionamiento es exactamente el

mismo, pero en vez de hacer llamada al paquete PKXLS hay que hacer llamada a PKXLSBD, el resto de

las funciones del API de generación de hoja de cálculo es idéntica, en la documentación se hace referencia

a PKXLS, pero también es válido para PKXLSBD.

Pasos para la generación de una hoja de cálculo

Los pasos para generar una hoja de cálculo son los siguientes:

1. Llamada a: pkxls.inicializa: Simplemente inicializa estructuras internas del paquete pkxls, no

recibe ningún parámetro, pero es obligatorio que sea la primera instrucción que se ejecute.

2. Dar las propiedades a la hoja de cálculo con: pkxls.set_propiedad_excel: Define propiedades a

nivel del archivo de hoja de cálculo, como por ejemplo el directorio en donde se va a generar,

nombre del archivo, etc.

3. Crear como mínimo una hoja de cálculo dentro del archivo, (se pueden generar tantas como sean

necesarias) llamando a la función pkxls.crea_hoja: La llamada a esta función nos devuelve un

NUMBER que identifica la hoja, ese dato será necesario almacenarlo para dar luego propiedades

a la hoja, como por ejemplo las sqls que debe de ejecutar.

4. Dar propiedades a la hoja, con pkxls.set_propiedad_hoja: Define propiedades a nivel de hoja,

como por ejemplo el nombre de la hoja. Este paso es opcional por defecto la crea con el nombre

Datos.

5. Añadir a la hoja tantas sqls como sean necesarias con la función pkxls.crea_sql, hay que pasarle

como parámetro el identificador de la hoja que ha devuelto la función pkxls.crea_hoja. Nos

devuelve un NUMBER que identifica la SQL, ese dato será necesario almacenarlo para poder dar

luego propiedades a la SQL. Las SQLS se ejecutarán de forma independiente y una al finalizar la

otra y en el orden en que se llame a pkxls.crea_sql. Este paso es opcional, hay un método

alternativo para asignar directamente valores a las celdas indicando las coordenadas de la celda y

el valor a asignar con pkxls.excel_celda.

6. Dar propiedades a la SQL, con pkxls.set_propiedad_sql: Define propiedades a nivel de SQL,

como por ejemplo la SELECT que ha de ejecutar. Este paso es opcional.

7. Dar propiedades a las columnas que se obtienen de la SQL con pkxls.set_propiedad_columna:

Define propiedades a nivel de un determinado campo de la SQL, como por ejemplo la máscara de

formato. Este paso es opcional.

8. Por defecto todos los campos numéricos se totalizan con suma, esa funcionalidad se puede

modificar creando tantas fórmulas de totalización como sean necesarias con

pkxls.crea_formula_total_sql, cada fórmula de totalización generará una fila de totales en el

orden en que llamemos a la función. Esta función devuelve un NUMBER que identifica la fórmula,

ese dato será necesario almacenarlo para poder dar luego propiedades a la fórmula. Este paso es

opcional.

9. Lanzar el proceso de generación llamando a pkxls.generar_xls. Este paso es obligatorio, es el

que compila toda la información que se le ha proporcionado al paquete pkxls y genera la hoja de

cálculo.

104

Ejemplo:

DECLARE

 v_id_hoja NUMBER;

 v_id_sql NUMBER;

BEGIN

 pkxls.inicializa;

 pkxls.set_propiedad_excel('DIRECTORIO', 'c:\temp');

 pkxls.set_propiedad_excel('ARCHIVO', 'prueba.xls');

 v_id_hoja := pkxls.crea_hoja();

 v_id_sql := pkxls.crea_sql(v_id_hoja);

 pkxls.set_propiedad_sql(v_id_sql, 'SQL', 'SELECT codigo_rapido "Código", nombre "Nombre", reservadon01 "Dato

Numérico" FROM clientes WHERE codigo_empresa = :global.codigo_empresa');

 pkxls.generar_xls();

END;

Propiedades

Archivo de hoja de cálculo

Se usará el procedimiento pkxls.set_propiedad_excel(<propiedad>, <valor>). Los valores que puede tomar

<propiedad> son los siguientes:

• DIRECTORIO: Directorio en el que se va a generar el archivo.

• ARCHIVO: Nombre del archivo, si no se indica se generará un nombre de archivo concatenando

el nombre del programa con el usuario de libra y la fecha y hora de la generación.

• ABRIR_EXCEL: Una vez generado el archivo lo abre con la aplicación predeterminada, sea

Office o OpenOffice, por defecto está activado, para desactivarlo hay que pasar en <valor> 'N'.

• USAR_CONEXION_DIRECTA: Para la generación de la hoja de cálculo se establecerá una

nueva conexión a la base de datos independiente.

• NUMERO_FILAS_EN_MEMORIA: Si se indica este parámetro en <valor> se indicará cada

cuantas filas se debe de escribir en disco, de esta forma se libera memoria permitiendo superar el

límite de filas al que se estaría limitado de la otra forma al quedarse sin memoria la máquina virtual

de Java. Al indicar este parámetro obligatoriamente el formato de salida será XLSX en vez de

XLS.

• OCULTAR_COLUMNA_255: La columna 255 se usa internamente para guardar un código de

agrupación para luego poder hacer totalizaciones, por defecto esa columna se oculta ya que al

usuario no le interesa para nada, pero mientras se está desarrollando posiblemente interese ver el

código de agrupación que se asigna. Para desactivar la ocultación de la columna 255 hay que pasar

en <valor> 'N'.

• TEXTO_TOTAL: Texto que se pone en las filas de totalización, como título de la totalización.

Si es un total de una agrupación se concatena a este texto el título de la columna de la agrupación.

• IMPRIMIR_CABECERA: Si se pasa en <valor> ‘N’ se evita que se ponga el título del informe,

nombre de la empresa y el usuario que genera la hoja de cálculo.

• SQL_TITULOS_TAM_FUENTE: Tamaño de la fuente de celdas de títulos. El valor se indica

en unidades 1/20 de puntos, es decir, para un tamaño de 40 habría que pasar 800, es decir, 40 *

20.

• SQL_TITULOS_NOMBRE_FUENTE: Nombre de la fuente a utilizar en celdas de títulos.

• SQL_TITULOS_COLOR_FUENTE: Color de la fuente a utilizar en celdas de títulos. Consultar

la tabla “Colores” en la sección “Constantes” para ver los colores disponibles.

• SQL_TITULOS_COLOR_FONDO: Color de fondo a utilizar en celdas de títulos. Consultar la

tabla “Colores” en la sección “Constantes” para ver los colores disponibles.

• SQL_TITULOS_NEGRITA: Se indica si las filas de título van a ponerse en negrita, por defecto

los títulos se ponen en negrita, para desactivarlo hay que pasar en <valor> la constante:

pkxls.boldweight_normal. Para ver la lista de constantes que se puede usar consultar la sección

“Constantes”, tabla “Negrita”

• SQL_TITULOS_SUBRAYADO: Se indica si las filas de título van a llevar el texto subrayado,

por defecto está desactivado, para activarlo hay que pasar en <valor> la constante: pkxls.u_single.

Para ver la lista de constantes se puede consultar la sección “Constantes”, tabla “Subrayado”.

105

• SQL_TITULOS_BORDE_SUP: Se indica si a las celdas de título van a llevar marcado el borde

superior, por defecto se le pone borde, para cambiarlo se puede pasar en <valor> una de las

siguientes constantes descritas en la sección “Constantes”, tabla “Borde”.

• SQL_TITULOS_BORDE_INF: Igual que SQL_TITULOS_BORDE_SUP pero para el borde

inferior de la celda, por defecto se le pone borde y puede llevar los mismos valores.

• SQL_TITULOS_BORDE_DER: Igual que SQL_TITULOS_BORDE_SUP pero para el borde

derecho de la celda, por defecto se le pone borde y puede llevar los mismos valores.

• SQL_TITULOS_BORDE_IZQ: Igual que SQL_TITULOS_BORDE_SUP pero para el borde

izquierdo de la celda, por defecto se le pone borde y puede llevar los mismos valores.

• SQL_ROTACION_TITULO: Ángulo de rotación del título, por ejemplo 90 para ponerlo en

vertical.

• SQL_TOTALES_TAM_FUENTE: Tamaño de la fuente de celdas de totalización. El valor se

indica en unidades 1/20 de puntos, es decir, para un tamaño de 40 habría que pasar 800, es decir,

40 * 20.

• SQL_TOTALES_NOMBRE_FUENTE: Nombre de la fuente a utilizar en celdas de

totalización.

• SQL_TOTALES_COLOR_FUENTE: Color de la fuente a utilizar en celdas de totalización.

Consultar la tabla “Colores” en la sección “Constantes” para ver los colores disponibles.

• SQL_TOTALES_COLOR_FONDO: Color de fondo a utilizar en celdas de totalización.

Consultar la tabla “Colores” en la sección “Constantes” para ver los colores disponibles.

• SQL_TOTALES_NEGRITA: Igual que SQL_TITULOS_NEGRITA, pero para las filas de

totalización, por defecto se ponen en negrita.

• SQL_TOTALES_SUBRAYADO: Igual que SQL_TITULOS_SUBRAYADO, pero para las

filas de totalización, por defecto no se subrayan.

• SQL_TOTALES_BORDE_SUP: Igual que SQL_TITULOS_BORDE_SUP, pero para las filas

de totalización, por defecto se marca el borde.

• SQL_TOTALES_BORDE_INF: Igual que SQL_TITULOS_ BORDE_INF, pero para filas de

totalización, por defecto se marca el borde.

• SQL_TOTALES_BORDE_DER: Igual que SQL_TITULOS_BORDE_DER, pero para filas de

totalización, por defecto se marca el borde.

• SQL_TOTALES_BORDE_IZQ: Igual que SQL_TITULOS_BORDE_IZQ, pero para filas de

totalización, por defecto se marca el borde.

• SQL_DATOS_TAM_FUENTE: Tamaño de la fuente de celdas de datos. El valor se indica en

unidades 1/20 de puntos, es decir, para un tamaño de 40 habría que pasar 800, es decir, 40 * 20.

• SQL_DATOS_NOMBRE_FUENTE: Nombre de la fuente a utilizar en celdas de datos.

• SQL_DATOS_COLOR_FUENTE: Color de la fuente a utilizar en celdas de datos. Consultar la

tabla “Colores” en la sección “Constantes” para ver los colores disponibles.

• SQL_DATOS_COLOR_FONDO: Color de fondo a utilizar en celdas de datos. Consultar la tabla

“Colores” en la sección “Constantes” para ver los colores disponibles.

• SQL_DATOS_NEGRITA: Igual que SQL_TITULOS_NEGRITA, pero para filas de datos, por

defecto no se pone en negrita.

• SQL_DATOS_SUBRAYADO: Igual que SQL_TITULOS_SUBRAYADO, pero para filas de

datos, por defecto no se pone en subrayado.

• SQL_DATOS_BORDE_IZQ: Igual que SQL_TITULOS_BORDE_IZQ, pero para las filas de

datos, por defecto se marca el borde.

• SQL_DATOS_BORDE_INF: Igual que SQL_TITULOS_BORDE_INF, pero para las filas de

datos, por defecto no se marca el borde

• SQL_DATOS_BORDE_DER: Igual que SQL_TITULOS_BORDE_INF, pero para filas de

datos, por defecto se marca el borde.

• SQL_DATOS_BORDE_SUP: Igual que SQL_TITULOS_BORDE_SUP, pero para fila de datos,

por defecto no se marca el borde.

106

• SQL_DATOS_BORDE_ULT_FILA_SUP: Igual que SQL_DATOS_BORDE_SUP, pero para

la última fila de datos de la agrupación o del listado, por defecto no se marca el borde.

• SQL_DATOS_BORDE_ULT_FILA_INF: Igual que SQL_DATOS_BORDE_INF pero para la

última fila de datos de la agrupación o del listado, por defecto se marca el borde.

• SQL_DATOS_BORDE_ULT_FILA_DER: Igual que SQL_DATOS_BORDE_DER pero para

la última fila de datos de la agrupación o del listado, por defecto se marca el borde.

• SQL_DATOS_BORDE_ULT_FILA_IZQ: Igual que SQL_DATOS_BORDE_IZQ pero para la

última fila de datos de la agrupación o del listado, por defecto se marca el borde.

• SQL_PONER_FONDO_FILAS_IMPARES: Sirve para resaltar las filas impares de la sql. Se

puede usar cualquier color descrito en la sección “Constantes” en la “Colores”, pero también se

puede indicar a mayores uno de los siguientes:

o S: Activa con el valor por defecto.

o N: Desactiva el resaltado.

Fuentes y Estilos

De forma directa no se pueden asignar fuentes a celdas hay que hacerlos a través de un estilo. Si lo único

que se busca es dar color al fondo y a la fuente de las celdas se pueden utilizar los estilos prefijados en la

vista V_COLORES_ERP, indicando a las celdas como código de estilo el valor de

V_COLORES_ERP.COLOR.

Para crear una fuente hay que usar la función pkxls.crea_fuente(), esta función devuelve un NUMBER que

identifica de forma única a la fuente. Mediante el identificador se pueden asignar propiedades a la fuente

usando el procedimiento pkxls.set_propiedad_fuente(<id_fuente>, <propiedad>, <valor>). El identificador

será necesario también para asignar la fuente a un estilo. Los valores que puede tomar <propiedad> son los

siguientes:

• NEGRITA: Permite activar o desactivar la negrita de la fuente, los valores posibles se detallan en

la sección “Constantes” en la tabla “Negrita”.

• SUBRAYADO: Permite activar o desactivar el subrayado de la fuente, los valores posibles se

detallan en la sección “Constantes” en la tabla “Subrayado”.

• NOMBRE_FUENTE: Nombre de la fuente a usar en las celdas. En <valor> hay que pasar

directamente el nombre de la fuente, por ejemplo 'Courier New'.

• TACHADO: Si se pasa S en <valor> el texto aparecerá tachado.

• CURSIVA: Si se pasa S en <valor> el texto aparecerá tachado.

• TAMANO_FUENTE: Tamaño de la fuente en unidades 1/20 de puntos, es decir, para un tamaño

de 40 habría que pasar 800, es decir, 40 * 20

• COLOR: Color con el que se pintará el texto de la fuente. Consultar la tabla “Colores” en la

sección “Constantes” para ver los colores disponibles.

Para crear un estilo se usará la función pkxls.crea_estilo(), esta función devuelve un NUMBER que

identifica de forma única al estilo. Mediante el identificador se pueden asignar propiedades al estilo usando

el procedimiento pkxls.set_propiedad_estilo(<id_estilo>, <propiedad>, <valor>). Los valores que puede

tomar <propiedad> son los siguientes:

• CODIGO: Código único que se le asigna al estilo para poder ser localizado de forma más sencilla

que por ID.

• FUENTE: Identificador de la fuente creada con pkxls.crea_fuente().

• MASCARA_FORMATO: Máscara de formato para campos numéricos, la máscara hay que

especificarla en formato Excel, por ejemplo: '#,##0.00'

• AJUSTAR_TEXTO: Si es una columna de texto se puede hacer que el texto se ajuste a la

columna, para ello hay que pasar S en <valor>.

• PROTEGER: Si se pasa N y a la hoja se le ha establecido una contraseña con

PASSWORD_HOJA, las celdas que tengan el estilo podrán ser modificadas. Por defecto esta

propiedad es S, por lo que si no se indica las celdas estarán protegidas en hojas con contraseña.

107

• BORDE_SUPERIOR: Permite pintar el borde superior de la celda, para ver los valores posibles

consultar la tabla “Borde” en la sección “Constantes”.

• BORDE_INFERIOR: Igual que BORDE_SUPERIOR pero para el borde inferior.

• BORDE_IZQUIERDO: Igual que BORDE_SUPERIOR pero para el borde izquierdo.

• BORDE_DERECHO: Igual que BORDE_SUPERIOR pero para el borde derecho.

• COLOR_FONDO: Color de fondo con el que se pintará la celda. Consultar la tabla “Colores” en

la sección “Constantes” para ver los colores disponibles.

• ROTACION: Ángulo de rotación del texto, por ejemplo 90 para ponerlo en vertical.

• ALINEACION_HORIZONTAL: Alineado horizontal del texto. Consultar la tabla “Alineación

Horizontal” en la sección “Constantes” para ver las posibles alineaciones disponibles.

• ALINEACION_VERTICAL: Alineado vertical del texto. Consultar la tabla “Alineación

Vertical” en la sección “Constantes” para ver las posibles alineaciones disponibles.

Hoja.

Se usará el procedimiento pkxls.set_propiedad_hoja(<id_hoja>, <propiedad>, <valor>). Es necesario pasar

en el parámetro <id_hoja> el identificador devuelto por la función pkxls.crea_hoja. Los valores que puede

tomar <propiedad> son los siguientes:

• NOMBRE_HOJA: Nombre de la pestaña de la hoja. Si no se especifica se le pone el texto Datos.

• PASSWORD_HOJA: Permite proteger la hoja contra modificaciones con la contraseña indicada

en <valor>. A nivel de estilo, se puede indicar que a un determinado estilo de celdas no se aplique

la protección.

• APAISADO: Si se pasa el valor S se configuran las propiedades de la hoja para impresión en

apaisado. El valor por defecto es N.

• TAMANO_PAPEL: Tamaño de la hoja para la configuración de la impresión. Se le puede pasar

los siguientes valores: PKXLS.LETTER_PAPERSIZE, PKXLS.LEGAL_PAPERSIZE,

PKXLS.EXECUTIVE_PAPERSIZE, PKXLS.A4_PAPERSIZE (Valor por defecto), PKXLS.A5_PAPERSIZE,

PKXLS.ENVELOPE_10_PAPERSIZE, PKXLS.ENVELOPE_DL_PAPERSIZE,

PKXLS.ENVELOPE_CS_PAPERSIZE, PKXLS.ENVELOPE_MONARCH_PAPERSIZE

• FILA_FIN_REP_TITULOS: Número de filas de la hoja que se repiten en cada página en la

impresión.

• COLUMNA_BLOQUEO: Indica hasta que columna se debe de bloquear la hoja al hacer scroll.

• FILA_BLOQUEO: Indica hasta que fila se debe de bloquear la hoja al hacer scroll.

• AUTOFILTRO: Permite indicar a nivel de hoja una zona de autofiltro. Las coordenadas se

indicarán en forma de cadena de texto separada por comas de la siguiente forma: ‘fila

inicial,columna inicial,fila final,columna final’. Por ejemplo '4,1,34,5' indicará que se aplique

autofiltro desde la fila 4 a la 34 y desde la columna 1 a la 5.

• ID_FUENTE_COMENTARIOS: Código de la fuente obtenido con pkxls.crea_fuente a aplicar

a los comentarios de las celdas de la hoja.

• ANCHO_COMENTARIOS: Ancho de los comentarios de las celdas por defecto en la hoja. El

ancho se indica según el ancho de la celda a la que se le añade el comentario y del ancho de las

celdas que se encuentran a su derecha, por tanto, si se indica 3, se tomará como ancho la suma del

ancho de la celda a la que se la asigna el comentario más el ancho de las 2 celdas contiguas a la

derecha.

• ALTO_COMENTARIOS: Alto de los comentarios de las celdas por defecto en la hoja. El alto

se indica según el alto de la fila de la celda a la que se le añade el comentario y del alto de las filas

de las celdas que se encuentran abajo, por tanto, si se indica 3, se tomará como alto la suma del

alto de la fila de la celda a la que se la asigna el comentario más el alto de las 2 filas contiguas

hacia abajo.

• CLONAR_DE_ID_HOJA: Creará la hoja partiendo de una copia de la indicada en <valor>. El

<valor> se corresponde con el ID_HOJA que se quiere duplicar. NOTA: Esta propiedad

únicamente se utiliza al modificar una hoja de cálculo, no se utiliza cuando se crea una hoja de

cero.

108

Columna de hoja

Se usará el procedimiento pkxls.set_propiedad_columna_hoja(<id_hoja>, <numero_columna>,

<propidad>, <valor>). Es necesario pasar en el parámetro <id_hoja> el identificador devuelto por la función

pkxls.crea_hoja. Los valores que puede tomar <propiedad> son los siguientes:

• ANCHO_COLUMNA: Si se especifica un ancho determinado para una columna lleva implícito

que se desactiva el dimensionado automático de la columna, el parámetro <valor> será un dato

numérico, y se especifica en 1/256 partes de carácter, por lo que si queremos dar un ancho de 1

carácter habría que indicar un valor de 256, aunque esa medida es un poco relativa a la fuente.

• DESACTIVAR_AUTOSIZE: Por defecto una vez terminado de procesar el sql se ajusta el

tamaño de las columnas al valor más largo, este funcionamiento por defecto se puede deshabilitar

para una determinada columna pasando en <valor> 'S'.

• FACTOR_AJUSTE_ANCHO: Hay casos en los que no se puede hacer un autosize de las

columnas (Forms 12, y cuando se limita el número de filas en memoria), la librería lo que hace es

intentar un ajuste aproximado calculando un ancho sobre la celda en la que puso el valor con más

caracteres multiplicando por 256, con esta propiedad se puede cambiar ese valor de ajuste.

• COLUMNA_FIN_GRUPO: Crea una agrupación de columnas entre la columna

<numero_columna> y la columna especificada en <valor>. Por lo general esta funcionalidad se

utiliza cuando hay por ejemplo la columna 8 con base, la columna 9 con importe impuesto y la 10

con el total, para que agrupe la 8 y la 9 y sólo muestre la 10 hay que ejecutar lo siguiente:

pkxls.set_propiedad_columna_hoja(v_id_sql1,8, 'COLUMNA_FIN_GRUPO', 9);

SQL

Se usará el procedimiento pkxls.set_propiedad_sql(<id_sql>, <propiedad>, <valor>). Es necesario pasar en

el parámetro <id_sql> el identificador devuelto por la función pkxls.crea_sql. Los valores que puede tomar

<propiedad> son los siguientes:

• SQL: SELECT que se ejecutará para extraer los datos de la base de datos para ponerlos en la hoja

de cálculo.

• SQL_BIG: Es excluyente con SQL. La propiedad SQL tiene la limitación de un tamaño de 32767

bytes, si la SQL es de mayor tamaño se tiene que usar SQL_BIG, de forma que la SQL se divida

en partes y por cada parte se le pasará a la librería usando SQL_BIG, por lo tanto, SQL sólo se

puede pasar una vez por cada SQL, pero SQL_BIG se puede llamar tantas veces como partes en

las que se divida la SQL.

• LIMITAR_NUMERO_REGISTROS: Permite indicar el número de registros máximos a

procesar, si la SQL devuelve más de los registros indicados serán ignorados.

• ALTO_FILA_TITULOS: Permite indicar en <valor> el alto en pixeles que debe de tener la fila

de títulos asociada a la consulta SQL.

• ALTO_FILA_CABECERA_TITULOS: En el caso de definirse agrupación de títulos en

cabecera, se permite indicar en <valor> el alto en pixeles para la final de agrupación.

• ALTO_FILA: Permite indicar en <valor> el alto en pixeles que deben de tener todas las filas

asociadas a la consulta SQL.

• SQL_TITULOS_COLUMNAS: Por defecto al procesar una SQL lo primero que hace es poner

los títulos de las columnas, para que no los ponga hay que pasar en <valor> 'N'.

• SQL_ESTILO_TITULOS: Indica el estilo de las celdas de título para la SQL. Hay que pasar en

<valor> el valor devuelto por pkxls.crea_estilo(). Si se indica esta propiedad se ignoran las

siguientes propiedades a nivel de archivo: SQL_TITULOS_NEGRITA, SQL_TITULOS_SUBRAYADO,

SQL_TITULOS_BORDE_SUP, SQL_TITULOS_BORDE_INF, SQL_TITULOS_BORDE_DER,

SQL_TITULOS_BORDE_IZQ, SQL_ROTACION_TITULO.

• SQL_AGRUPAR_EN_PRIMERA_COLUMNA: Si se usan agrupaciones indica como se

realiza la ruptura. Los posibles valores son:

o N: Es el valor por defecto. Cuando se cambia de nivel de agrupación las columnas de los

niveles superiores se dejan en blanco

109

o S: Todas las agrupaciones las hace en la primera columna dejando espacios según el nivel

de agrupación.

o T: Se hace la agrupación para la totalización, pero se muestran todos los datos, es decir,

lo mismo que si no hubiese agrupación, pero con totalizaciones parciales.

• SQL_TOTALIZAR: Por defecto se generan totales de todos los campos numéricos, para

desactivar este funcionamiento hay que pasar en <valor> 'N', de esa forma la sql no genera ningún

tipo de total.

• SQL_DESP_Y_INICIAL: Con esta propiedad se puede indicar cuantas filas en blanco se dejarán

antes de poner la primera fila generada por la sql, el valor por defecto es 0.

• SQL_COLUMNA_SELECTOR_ESTILO: Si se pasa 'S' en <valor> quiere decir que la última

columna de la SQL es la que indica el estilo de las hojas, por lo que no será trasladada a la Excel.

La columna deberá de ser de tipo texto y tendrá el siguiente formato:

o columnaX:código de estilo|columnaY:código de estilo|...|columnaZ:código de estilo

o Ejemplo: 0:ROJO|2:AZUL (A la columna 2 se le aplica el estilo con código AZUL y al

resto de las columnas se le aplica el estilo con código ROJO.

• SQL_AUTOFILTRO: Pasando el valor ‘S’, se activa la funcionalidad de Filtros de la hoja de

cálculo para el rango de filas que utiliza la SQL. NOTA: Si a nivel de hoja se ha definido la

propiedad “PASSWORD_HOJA”, el autofiltro únicamente se tendrá en cuenta cuando a nivel de

archivo se indica ‘S’ en “USAR_CONEXION_DIRECTA” y no se indica

“NUMERO_FILAS_EN_MEMORIA”.

Grupos de títulos de columnas

Los grupos de títulos permiten añadir una fila anterior a la fila de títulos en la que se agrupan las columnas

de una SQL con un texto. Cada agrupación puede tener un estilo diferente, en el caso de no indicar un estilo

se utilizará el genérico para títulos.

Si las columnas con el mismo tipo son contiguas las agrupa y si hay columnas intermedias que no

pertenezcan al grupo se generarán grupos adicionales.

Se usará el procedimiento pkxls.set_propiedad_grupo_col_sql (<id_grupo>, <propiedad>, <valor>). Es

necesario pasar en el parámetro <id_grupo> el identificador devuelto por la función

pkxls.crea_grupo_columnas_sql, este indientifcador habrá que indicarlo a cada columna de la SQL que

vaya a pertenecer al grupo. Los valores que puede tomar <propiedad> son los siguientes:

• TITULO: Texto que se va a visualizar al grupo.

• ESTILO: Identificador del estilo visual a aplicar al grupo. Ver “Fuentes y Estilos”.

Columna de la SQL

Se usará el procedimiento pkxls.set_propiedad_columna(<id_sql>, <numero_columna>, <propiedad>,

<valor>). Es necesario pasar en el parámetro <id_sql> el identificador devuelto por la función

pkxls.crea_sql.

El parámetro <numero_columna> identifica el número del campo que saca la select comenzando a contar

en 1.

Los valores que puede tomar <propiedad> son los siguientes:

• SQL_TITULO_COLUMNA: Por defecto se pone el título que se extrae de la sql, pero si se

especifica esta propiedad prevalece sobre el alias que tenga el campo en la sql.

• SQL_COMENTARIO_TITULO_COLUMNA: Comentario a incluir en la celda que tenga el

título de la columna en la hoja de cálculo.

• SQL_ROTACION_TITULO: Ángulo de rotación del título, por ejemplo 90 para ponerlo en

vertical.

• SQL_PONER_TITULO: Si a nivel de SQL no se ha desactivado la impresión de los títulos se

puede deshabilitar para un campo en concreto pasando en <valor> 'N'.

110

• SQL_AJUSTAR_TEXTO: Si es una columna de texto se puede hacer que el texto se ajuste a la

columna, para ello hay que pasar S en <valor>.

• SQL_DESACTIVAR_AUTOSIZE (OBSOLETO: Se debería usar la propiedad

ANCHO_COLUMNA de PKXLS.SET_PROPIEDAD_COLUMNA_HOJA): Por defecto una

vez terminado de procesar el SQL se ajusta el tamaño de las columnas al valor más largo, este

funcionamiento por defecto se puede deshabilitar para una determinada columna pasando en

<valor> 'S'.

• SQL_DESACTIVAR_TOTALIZACION: Todas las columnas numéricas se totalizan, se puede

deshabilitar para una determinada columna pasando en <valor> 'S'.

• SQL_DESACTIVAR_SUBTOTAL: Todas las columnas numéricas se subtotalizan. Se puede

deshabilitar la subtotalización para una determinada columna pasando en <valor> 'S'.

• SQL_ANCHO_COLUMNA (OBSOLETO: Se debería usar la propiedad

ANCHO_COLUMNA de PKXLS.SET_PROPIEDAD_COLUMNA_HOJA): Si se especifica

un ancho determinado para una columna lleva implícito que se desactiva el dimensionado

automático de la columna, el parámetro <valor> será un dato numérico, y se especifica en 1/256

partes de carácter, por lo que si queremos dar un ancho de 1 carácter habría que indicar un valor

de 256, aunque esa medida es un poco relativa a la fuente.

• SQL_FIN_GRUPO: Se pueden generar sqls con agrupaciones, en este caso hay que indicar qué

campos son los que finalizan un grupo, es importante el orden de los campos de la SQL, debiendo

mantener el orden de las agrupaciones, además es necesario que la SQL lleve un ORDER BY por

todos los campos por los que se agrupe. A mayores se incluyen opciones para generar las

agrupaciones con modalidad colapsada, mostrando inicialmente solamente las filas de

totales/subtotales para dicha agrupación. Puede contener los siguientes valores:

o N: Valor por defecto, el campo no es fin de agrupación.

o S: El campo es fin de una agrupación y se generan totales.

o V: El campo es fin de una agrupación y se generan totales y en el total se concatena el

o valor de la agrupación que se está totalizando.

o NT: El campo es fin de una agrupación y para esa agrupación no se generan totales.

o SC: Mismo caso que “S” con modo colapsado.

o VC: Mismo caso que “V” con modo colapsado.

• SQL_MASCARA_FORMATO: Máscara de formato de campos numéricos. Hay que indicarla

la en formato Excel, ejemplo: '#,##0.00'

• SQL_TIPO: Tipo de la columna. Puede contener los siguientes valores:

o C: Campo normal.

o F: Campo con fórmula de totalización. En la sql podemos sacar una columna

alfanumérica con una fórmula, al pasarle este valor se le indica a Excel que la trate como

una fórmula y no como un texto normal, ver apartado: Variables disponibles en fórmulas.

• SQL_FORMULA_TOTAL: Formula a aplicar cuando el campo es numérico y se está

totalizando, si no se especifica una fórmula usará la fórmula de totalización por defecto por defecto

que es: SUBTOTAL(9;<columna><fila_inicial>:<columna><fila_final>)

• SQL_FORMULA_TOTAL_ULT_NIVEL: Formula a aplicar cuando el campo es numérico y

se está totalizando y aparte en caso de haber agrupaciones esta será la fórmula aplicar en el nivel

más bajo, es decir, se opera directamente con datos y no con resultado de otras fórmulas, si no se

especifica una fórmula usará la fórmula de totalización por defecto:

SUM(<columna><fila_inicial>:<columna><fila_final>)

• SQL_FORZAR_SOLO_PRIMERA_RUPTURA: Únicamente tiene sentido cuando a nivel de

la SQL se ha indicado SQL_AGRUPAR_EN_PRIMERA_COLUMNA = T. De esta forma se

puede indicar qué columnas únicamente se deben de imprimir una única vez en cada ruptura.

• SQL_ESTILO_TITULO: Indica el estilo de la celda de título. Hay que pasar en <valor> el valor

devuelto por pkxls.crea_estilo(). Si se indica esta propiedad se ignoran las siguientes propiedades

a nivel de archivo: SQL_TITULOS_NEGRITA, SQL_TITULOS_SUBRAYADO, SQL_TITULOS_BORDE_SUP,

111

SQL_TITULOS_BORDE_INF, SQL_TITULOS_BORDE_DER, SQL_TITULOS_BORDE_IZQ,

SQL_ROTACION_TITULO y la propiedad SQL_ESTILO_TITULOS a nivel de SQL.

• SQL_IMAGEN: Indica si el campo es de tipo BLOB y contiene una imagen que debe de ser

exportada a la hoja de cálculo. Hay que pasar en <valor> 'S' para activarlo. NOTA: Requiere que

se establezca conexión directa.

• SQL_FORZAR_ALTO_IMAGEN: En el caso de haber indicado SQL_IMAGEN con el valor

S, se puede forzar que se ajuste el alto de la imagen al valor indicado en Pixeles en <valor>.

• SQL_TIPO_AJUSTE_IMAGEN: Si se indicó SQL_IMAGEN con el valor S, se puede indicar

como debe de comportarse la imagen al redimensionar o mover las celdas, en <valor> se puede

indicar uno de estos tres valores:

o DONT_MOVE_AND_RESIZE: No se mueve ni se redimensiona.

o MOVE_AND_RESIZE: Se mueve y redimensiona con las celdas.

o MOVE_DONT_RESIZE: Se mueve con las celdas, pero no se redimensiona la imagen

en el caso de que cambie de tamaño la celda.

• ID_GRUPO: Identificador del grupo de la agrupación de títulos de columnas a la que pertenece

la columna.

A nivel de fórmula.

Se usará el procedimiento pkxls.set_propiedad_formula_total(<id_formula>, <propiedad>, <valor>). Es

necesario pasar en el parámetro <id_formula> el identificador devuelto por la función

pkxls.crea_formula_total_sql(<id_sql>). Los valores que puede tomar <propiedad> son los siguientes:

• FORMULA: Texto de la fórmula. Ver apartado: Variables disponibles en fórmulas.

• FORMULA_ULTIMO_NIVEL: En caso de haber agrupaciones será la fórmula que se aplica en

el nivel más bajo, cuando tiene que operar directamente con datos y no con el resultado de otras

fórmulas. Ver apartado: Variables disponibles en fórmulas.

• IMPRIMIR_EN_AGRUPACION: Por defecto cuando se crea una formula se va a imprimir en

los totales del informe y en las agrupaciones, para desactivar una fórmula en las agrupaciones hay

que pasar 'N' en <valor>.

• IMPRIMIR_EN_TOTAL: Por defecto cuando se crea una formula se va a imprimir en los totales

del informe y en las agrupaciones, para desactivar una fórmula en los totales del informe hay que

pasar 'N' en <valor>.

• MASCARA_FORMATO: Por defecto cuando se totaliza una columna numérica se usa la misma

máscara que la que hay especificada para la columna, para cambiar ese criterio para una

determinada fórmula hay que pasar en <valor> la máscara de formato a aplicar.

• TITULO: Por defecto se le pone como título a la fila de totalización el título de la columna, para

cambiar el título para una determinada fórmula hay que pasarlo en <valor>.

A nivel de columna de fórmula.

Se usará el procedimiento pkxls.set_propiedad_columna_total(<id_formula>, <numero_columna>,

<propiedad>, <valor>). Es necesario pasar en el parámetro <id_formula> el identificador devuelto por la

función pkxls.crea_formula_total_sql. El parámetro <numero_columna> identifica el número del campo

que saca la SELECT comenzando a contar en 1.

Los valores que puede tomar <propiedad> son los siguientes:

• FORMULA: Fórmula a aplicar cuando el campo es numérico y se está totalizando, en caso de no

especificarse se usará la fórmula indicada en pkxls.set_propiedad_formula_total. Ver apartado:

Variables disponibles en fórmulas. Si se le pasa el valor STD se aplica la fórmula estándar.

• FORMULA_ULTIMO_NIVEL: En caso de haber agrupaciones será la fórmula que se aplica en

el nivel más bajo, cuando tiene que operar directamente con datos y no con el resultado de otras

fórmulas. En caso de no especificarse se usará la fórmula indicada en

pkxls.set_propiedad_formula_total. Ver apartado: Variables disponibles en fórmulas. Si se pasa el

valor STD se aplica la fórmula estándar de último nivel.

112

• MASCARA_FORMATO: Por defecto cuando se totaliza una columna numérica se usa la misma

máscara que la que hay especificada para la columna, para cambiar ese criterio para una

determinada fórmula hay que pasar en <valor> la máscara de formato a aplicar.

Variables disponibles en fórmulas.

Para construir las fórmulas de forma dinámica haciendo disponemos de las siguientes variables que serán

sustituidas antes de ser asignadas como fórmula a la celda:

• <fila_inicial>: Número de fila en la que comienza el grupo. Variable alternativa: <fini>

• <fila_final>: Número de fila en la que termina el grupo. Variable alternativa: <ffin>

• <fila>: Número de fila en la que va a poner la fórmula. Variable alternativa: <fl>

• <columna>: Columna en que se va a poner la fórmula. Variable alternativa <cl>

• <codigo_ruptura>: Código de la ruptura que se está totalizando, el código de ruptura se almacena

en la columna IV. Variable alternativa <cr>

Se pueden usar operaciones para desplazar el valor de una variable, por ejemplo, si queremos coger la

columna anterior a la en que se va a poner la fórmula se pondría <columna-1>.

Fórmulas matriciales.

Se puede indicar que la fórmula es de tipo matricial (el equivalente en Excel a validar la fórmula con Control

+ Mayúsculas + INTRO) metiendo la fórmula entre llaves “{“ y “}”., Por ejemplo: {SUM(<columna-

2><fila-2>:<columna-2><fila-1>*<columna-1><fila-2>:<columna-1><fila-1>)}

Si la fórmula matricial tiene salida a un rango de celdas, este rango de celdas se puede indicar al principio

metiendo el rango también entre llaves “{“ y “}”. Ejemplo: {{D3:D5}SUM(<columna-2><fila-

2>:<columna-2><fila-1>*<columna-1><fila-2>:<columna-1><fila-1>)}

IMPORTANTE: Las fórmulas matriciales no se pueden utilizar cuando se indica

USAR_CONEXION_DIRECTA junto a un número de registros en memoria.

Ejemplo 1:

DECLARE

 v_id_hoja NUMBER;

BEGIN

 pkxls.inicializa;

 pkxls.set_propiedad_excel('DIRECTORIO', 'c:\temp');

 pkxls.set_propiedad_excel('ARCHIVO', 'prueba.xls');

 v_id_hoja := pkxls.crea_hoja();

 pkxls.excel_celda(v_id_hoja, 0, 0, 'N', 'P1', 10);

 pkxls.excel_celda(v_id_hoja, 1, 0, 'N', 26, 10);

 pkxls.excel_celda(v_id_hoja, 2, 0, 'N', 256, 10);

 pkxls.excel_celda(v_id_hoja, 0, 1, 'N', 'P2', 10);

 pkxls.excel_celda(v_id_hoja, 1, 1, 'N', 22, 10);

 pkxls.excel_celda(v_id_hoja, 2, 1, 'N', 233, 10);

 pkxls.excel_celda(v_id_hoja, 3, 2, 'F', '{{D3:D5}SUM(<columna-2><fila-2>:<columna-2><fila-1>*<columna-

1><fila-2>:<columna-1><fila-1>)}', 10);

 pkxls.generar_xls();

END;

113

Ejemplo 2:

DECLARE

 v_id_hoja PLS_INTEGER;

 v_id_sql PLS_INTEGER;

 v_id_formula PLS_INTEGER;

BEGIN

 pkxls.inicializa;

 pkxls.set_propiedad_excel('DIRECTORIO','c:\temp');

 pkxls.set_propiedad_excel('ARCHIVO', 'prueba.xls');

 v_id_hoja := pkxls.crea_hoja();

 v_id_sql := pkxls.crea_sql(v_id_hoja);

 pkxls.set_propiedad_sql(v_id_sql,'SQL','SELECT articulo, uni_seralm, precio_presentacion

 FROM albaran_ventas_lin

 WHERE rownum <= 100');

 pkxls.set_propiedad_columna(v_id_sql, 2, 'SQL_DESACTIVAR_TOTALIZACION', 'S');

 v_id_formula := pkxls.crea_formula_total_sql(v_id_sql);

 pkxls.set_propiedad_columna_total(v_id_formula, 3, 'FORMULA_ULTIMO_NIVEL', '{SUM(<columna-

1><fila_inicial>:<columna-1><fila_final>*<columna><fila_inicial>:<columna><fila_final>)}');

 pkxls.generar_xls();

END;

Asignar valores sin ser obtenidos de una SQL a determinadas celdas.

Hay un método complementario a la opción de cubrir la Excel usando datos extraídos de una SQL, este

método permite ir indicando las posiciones x e y de la celda y asignarle un valor. Se puede dar valor

mediante este método a tantas celdas como sea necesario.

Se usará el procedimiento: pkxls.excel_celda(<id_hoja>, <x>, <y>, <tipo>, <valor>, <posicion>, <estilo>);

• <id_hoja>: Identifica la hoja en que se va a crear la celda, será el identificador de la hoja que se

ha obtenido con pkxls.crea_hoja.

• <x>: Coordenada x de la celda en la hoja, la primera celda es la 0.

• <y>: Coordenada y de la celda en la hoja, la primera celda es la 0.

• <tipo>: Indica el formato que va a tener la celda. Puede contener los siguientes valores:

o C: Indica que es un campo de datos normal.

o T: Indica que es un campo de título.

o F: Indica que es un campo que debe de evaluarse como fórmula. Se pueden usar las

etiquetas <fila> y <columna>.

o I: Imagen. En <valor> se ha de indiciar una SQL que obtenga una única fila con un campo

de tipo BLOB que contenga la imagen a mostrar. La SQL puede tener a mayores del

campo BLOB campos que indiquen como se ha de ajustar la imagen en la hoja de cálculo,

estos campos deben tener los siguientes alias:

▪ FORZAR_ALTO_IMAGEN: Campo numérico que indique el alto que debe

de tener la imagen. El ancho se ajustará proporcionalmente.

▪ TIPO_AJUSTE_IMAGEN: Campo alfanumérico que indica como debe de

moverse la imagen en el caso de que se redimensione o mueva la fila o columna

a la que está asociada. Puede contener los siguientes valores:

• DONT_MOVE_AND_RESIZE: No se mueve ni se redimensiona.

• MOVE_AND_RESIZE: Se mueve y redimensiona con las celdas.

• MOVE_DONT_RESIZE: Se mueve con las celdas, pero no se

redimensiona la imagen en el caso de que cambie de tamaño la celda.

OBSERVACIONES:

La generación con imágenes únicamente está disponible cuando se utiliza la propiedad

USAR_CONEXION_DIRECTA con el valor S.

Una imagen queda anclada a una serie de columnas por lo que puede que se distorsione en el momento de

ajustar el ancho a las columnas. Para evitarlo hay que desactivar el autosize de las columnas de la hoja de

cálculo o asignar un ancho fijo a las columnas para que se ajusten al principio de la generación y ya quede

la imagen anclada con el ancho correcto. Ver propiedades a nivel de columna de hoja.

114

▪ TIPO_AJUSTE_FILA_COLUMNA: Campo alfanumérico que indica como

debe de comportarse la fila y columna a la que se asocia la imagen:

• OVERLAY_ROW_AND_COLUMN: La fila y columna no se adapta

a la imagen, por lo que si la imagen es mayor no afecta al tamaño que

tenga la fila y columna y simplemente ocupará las filas y columnas

contiguas necesarias para mostrarse.

• EXPAND_ROW_AND_COLUMN: Ampliar el tamaño de la fila y

columna lo necesario para que entre la imagen.

• EXPAND_COLUMN: Ampliar el tamaño de la columna lo necesario

para que entre la imagen. Si el alto de la fila es menor que el alto de la

imagen ocupará las filas contiguas necesarias para mostrarse.

• EXPAND_ROW: Ampliar el tamaño de la fila lo necesario para que

entre la imagen. Si el ancho de la columna es menor que el ancho de la

imagen ocupará las columnas contiguas necesarias para mostrarse.

EJEMPLO: SELECT imagen_report, 50 forzar_alto_imagen, 'DONT_MOVE_AND_RESIZE'

tipo_ajuste_imagen, 'OVERLAY_ROW_AND_COLUMN' tipo_ajuste_fila_columna FROM empresas_logo WHERE

codigo_empresa = '013'

• <valor>: Contenido de la celda, puede ser numérico o alfanumérico.

• <posicion>: Indica en que momento se va a escribir en la celda, hay 5 posibilidades:

o 10: Escribe antes de procesar las sqls que tiene asignadas la hoja.

o 20: Escribe después de procesar las sqls que tiene asignadas la hoja, pero antes de hacer

el autosize de las columnas, por lo que el tamaño de las celdas se verá afectado por el

contenido asignado por este procedimiento.

o 25: Igual que el 20 pero el valor de la coordenada y es relativa a la última fila impresa en

la hoja.

o 30: Se escribe después de procesar las sqls que tiene asignadas la hoja y después de

haberse ejecutado el autosize, por lo que los valores asignados por este procedimiento no

afectan al autosize.

o 35: Igual que el 30 pero el valor de la coordenada y es relativa a la última fila impresa en

la hoja.

• <estilo>: Código de estilo a aplicar a la celda. (ver sección “Fuentes y Estilos”).

También se pueden indicar valores a celdas siendo las coordenada <y> en relación a una determinada SQL

(desde entorno 6.2.5), para ello se utilizará el procedimiento pkxls.excel_celda_sql(<id_sql>, <x>, <y>,

<tipo>, <valor>, <posición>, <estilo>);

• <id_sql>: Identifica la SQL sobre la que debe ser relativa la coordenada <y>.

• <x>: Coordenada x de la celda de la hoja, la primera celda es la 0.

• <y>: Coordenada relativa al inicio o fin de los valores de la SQL.

• <tipo>: Igual que en pkxls.excel_celda.

• <valor>: Igual que en pkxls.excel_celda.

• <posición>: Indica en qué momento se va a escribir la celda.

o 15: Antes de comenzar a procesar la SQL, por tanto, se escribirá al principio de los

valores de la SQL.

o 25: Después de procesar la SQL, por tanto, se escribirá al final de los valores de la SQL.

• <estilo>: Igual que en pkxls.excel_celda.

115

Ejemplo:

DECLARE

 v_id_hoja NUMBER;

BEGIN

 pkxls.inicializa;

 pkxls.set_propiedad_excel('DIRECTORIO', 'c:\temp');

 pkxls.set_propiedad_excel('ARCHIVO', 'prueba.xls');

 v_id_hoja := pkxls.crea_hoja();

 pkxls.excel_celda(v_id_hoja, 0, 0, 'T', 'Valor 1', 10);

 pkxls.excel_celda(v_id_hoja, 1, 0, 'T', 'Valor 2', 10);

 pkxls.excel_celda(v_id_hoja, 2, 0, 'T', 'Total', 10);

 pkxls.excel_celda(v_id_hoja, 0, 1, 'N', 100, 10);

 pkxls.excel_celda(v_id_hoja, 1, 1, 'N', 200, 10);

 pkxls.excel_celda(v_id_hoja, 2, 1, 'F', 'SUM(<columna-2><fila>:<columna-1><fila>)', 10);

 pkxls.generar_xls();

END;

Ejemplo con pkxls.excel_celda_sql:

PROCEDURE test IS

 v_id_hoja PLS_INTEGER;

 v_id_sql1 PLS_INTEGER;

 v_id_sql2 PLS_INTEGER;

BEGIN

 pkxls.inicializa(TRUE);

 pkxls.set_propiedad_excel('DIRECTORIO','c:\temp');

 pkxls.set_propiedad_excel('ARCHIVO', 'prueba.xls');

 v_id_hoja := pkxls.crea_hoja();

 v_id_sql1 := pkxls.crea_sql(v_id_hoja);

 pkxls.set_propiedad_sql(v_id_sql1,'SQL','SELECT * FROM DIARIOS');

 v_id_sql2 := pkxls.crea_sql(v_id_hoja);

 pkxls.set_propiedad_sql(v_id_sql2,'SQL','SELECT * FROM DIARIOS');

 pkxls.excel_celda_sql(v_id_sql1,0,0,'C','TEXTO FIJO AL PRINCIPIO DE LA PRIMERA SQL', 15);

 pkxls.excel_celda_sql(v_id_sql2,0,0,'C','TEXTO_FIJO AL PRINCIPIO DE LA SEGUNDA SQL', 15);

 pkxls.excel_celda_sql(v_id_sql1,0,0,'C','TEXTO FIJO AL FINAL DE LA PRIMERA SQL', 25);

 pkxls.excel_celda_sql(v_id_sql2,0,0,'C','TEXTO FIJO AL FINAL DE LA SEGUNDA SQL', 25);

 pkxls.excel_celda(v_id_hoja,0,0,'C','TEXTO FIJO AL FINAL DE TODAS LAS SQLS',25);

 pkxls.generar_xls();

END;

Combinar celdas

Se pueden realizar agrupaciones de celdas usando la función (devuelve un número que identifica la

agrupación) pkxls.pkxls.crea_region(<id_hoja>, <fila_inicial>, <columna_inicial>, <fila_final>,

<columna_final>);

• <id_hoja>: Identifica la hoja en la que se van a combinar las celdas.

• <fila_inicial>: Número de fila en la que se encuentra la celda superior izquierda de la agrupación.

La primera fila tiene el número 0.

• <columna_inicial>: Número de columna en la que se encuentra la celda superior izquierda de la

agrupación. La primera columna tiene el número 0.

• <fila_final>: Número de fila en la que se encuentra la celda inferior derecha de la agrupación.

• <columna_final>: Número de columna en la que se encuentra la celda inferior derecha de la

agrupación.

116

Ejemplo:

DECLARE

 v_id_hoja PLS_INTEGER;

 v_id_region PLS_INTEGER;

 v_id_fuente NUMBER;

 v_id_estilo_sup NUMBER;

 v_id_estilo_inf NUMBER;

BEGIN

 pkxls.inicializa;

 pkxls.set_propiedad_excel('DIRECTORIO', 'c:\temp');

 pkxls.set_propiedad_excel('ARCHIVO', 'prueba.xls');

 v_id_hoja := pkxls.crea_hoja();

 v_id_fuente := pkxls.crea_fuente();

 pkxls.set_propiedad_fuente(v_id_fuente, 'NEGRITA', pkxls.boldweight_bold);

 v_id_estilo_sup := pkxls.crea_estilo();

 pkxls.set_propiedad_estilo(v_id_estilo_sup, 'FUENTE', v_id_fuente);

 pkxls.set_propiedad_estilo(v_id_estilo_sup, 'ALINEACION_HORIZONTAL', PKXLS.ALIGN_CENTER);

 pkxls.set_propiedad_estilo(v_id_estilo_sup, 'BORDE_SUPERIOR', PKXLS.BORDER_THIN);

 pkxls.set_propiedad_estilo(v_id_estilo_sup, 'BORDE_IZQUIERDO', PKXLS.BORDER_THIN);

 pkxls.set_propiedad_estilo(v_id_estilo_sup, 'BORDE_DERECHO', PKXLS.BORDER_THIN);

 v_id_estilo_inf := pkxls.crea_estilo();

 pkxls.set_propiedad_estilo(v_id_estilo_inf, 'FUENTE', v_id_fuente);

 pkxls.set_propiedad_estilo(v_id_estilo_inf, 'ALINEACION_HORIZONTAL', PKXLS.ALIGN_CENTER);

 pkxls.set_propiedad_estilo(v_id_estilo_inf, 'BORDE_INFERIOR', PKXLS.BORDER_THIN);

 pkxls.set_propiedad_estilo(v_id_estilo_inf, 'BORDE_IZQUIERDO', PKXLS.BORDER_THIN);

 pkxls.set_propiedad_estilo(v_id_estilo_inf, 'BORDE_DERECHO', PKXLS.BORDER_THIN);

 v_id_region := pkxls.crea_region(v_id_hoja, 1, 1, 1, 2);

 v_id_region := pkxls.crea_region(v_id_hoja, 2, 1, 2, 2);

 pkxls.excel_celda(v_id_hoja, 1, 1, 'C', 'FILA 1', 30, v_id_estilo_sup);

 pkxls.excel_celda(v_id_hoja, 2, 1, 'C', '', 30, v_id_estilo_sup);

 pkxls.excel_celda(v_id_hoja, 1, 2, 'C', 'FILA 2', 30, v_id_estilo_inf);

 pkxls.excel_celda(v_id_hoja, 2, 2, 'C', '', 30, v_id_estilo_inf);

 pkxls.generar_xls();

END;

Constantes

Colores

Los colores se pueden indicar de varias formas (NOTA: En formato XLSX se aplicará el color exacto

indicado, pero en formato XLS se aplicará el que más se aproxime dentro de la paleta de colores disponible):

• Código de color definido en la vista V_COLORES_ERP. Ejemplo: RED_300

• Formato hexadecimal de la forma #RRGGBB, ejemplo: #E57373

• Formato RGB, rNNNgNNNbNNN, ejemplo: r229g115b115

• Número de color de la siguiente tabla de colores prefijados.

Código Color Código Color Código Color

64 AUTOMATIC 49 AQUA 45 ROSE

8 BLACK 12 BLUE 57 SEA_GREEN

54 BLUE_GREY 11 BRIGHT_GREEN 47 TAN

60 BROWN 29 CORAL 15 TURQUOISE

24 CORNFLOWER_BLUE 18 DARK_BLUE 9 WHITE

58 DARK_GREEN 16 DARK_RED 30 ROYAL_BLUE

56 DARK_TEAL 19 DARK_YELLOW 40 SKY_BLUE

51 GOLD 17 GREEN 21 TEAL

22 GREY_25_PERCENT 55 GREY_40_PERCENT 20 VIOLET

23 GREY_50_PERCENT 63 GREY_80_PERCENT 13 YELLOW

62 INDIGO 46 LAVENDER 44 PALE_BLUE

26 LEMON_CHIFFON 48 LIGHT_BLUE 61 PLUM

31 LIGHT_CORNFLOWER_BLUE 42 LIGHT_GREEN 14 PINK

52 LIGHT_ORANGE 27 LIGHT_TURQUOISE 10 RED

43 LIGHT_YELLOW 50 LIME 53 ORANGE

25 MAROON 59 OLIVE_GREEN 28 ORCHID

117

Negrita

Código Descripción

PKXLS.BOLDWEIGHT_BOLD Activa Negrita

PKXLS.BOLDWEIGHT_NORMAL Desactiva negrita

Subrayado

Código Descripción

PKXLS.U_NONE Sin subrayado

PKXLS.U_SINGLE Subrayado simple

PKXLS.U_DOUBLE Subrayado doble

Borde

Código Descripción

PKXLS.BORDER_NONE Sin borde

PKXLS.BORDER_THIN

PKXLS.BORDER_MEDIUM

PKXLS.BORDER_DASHED

PKXLS.BORDER_HAIR

PKXLS.BORDER_THICK

PKXLS.BORDER_DOUBLE

PKXLS.BORDER_DOTTED

PKXLS.BORDER_MEDIUM_DASHED

PKXLS.BORDER_DASH_DOT

PKXLS.BORDER_MEDIUM_DASH_DOT

PKXLS.BORDER_DASH_DOT_DOT

PKXLS.BORDER_SLANTED_DASH_DOT

Alineación Horizontal

Código Descripción

PKXLS.ALIGN_GENERAL Normal (horizontal)

PKXLS.ALIGN_LEFT Izquierda

PKXLS.ALIGN_CENTER Centrado

PKXLS.ALIGN_RIGHT Derecho

Alineación Vertical

Código Descripción

PKXLS.VERTICAL_TOP Arriba

PKXLS.VERTICAL_CENTER Centrado

PKXLS.VERTICAL_BOTTOM Abajo

118

Ejemplo usando estilos y fuentes:

DECLARE

 v_id_hoja NUMBER;

 v_id_sql NUMBER;

 v_id_fuente NUMBER;

 v_id_estilo2 NUMBER;

 v_id_estilo1 NUMBER;

BEGIN

 pkxls.inicializa;

 pkxls.set_propiedad_excel('DIRECTORIO', 'c:\temp');

 pkxls.set_propiedad_excel('ARCHIVO', 'prueba.xls');

 -- Se inicializan estilos

 v_id_estilo1 := pkxls.crea_estilo();

 pkxls.set_propiedad_estilo(v_id_estilo1, 'COLOR_FONDO', 10);

 pkxls.set_propiedad_estilo(v_id_estilo1, 'CODIGO', 'ROJO');

 v_id_fuente := pkxls.crea_fuente();

 pkxls.set_propiedad_fuente(v_id_fuente, 'NEGRITA', pkxls.boldweight_bold);

 pkxls.set_propiedad_fuente(v_id_fuente, 'SUBRAYADO', pkxls.u_single);

 v_id_estilo2 := pkxls.crea_estilo();

 pkxls.set_propiedad_estilo(v_id_estilo2, 'COLOR_FONDO', 13);

 pkxls.set_propiedad_estilo(v_id_estilo2, 'FUENTE', v_id_fuente);

 pkxls.set_propiedad_estilo(v_id_estilo2, 'CODIGO', 'AMARILLO');

 pkxls.set_propiedad_excel('ABRIR_EXCEL', 'S');

 v_id_hoja := pkxls.crea_hoja();

 -- Se asigna la sql a la hoja y se indica que la última columna tiene la información de estilos

 v_id_sql := pkxls.crea_sql(v_id_hoja);

 pkxls.set_propiedad_sql(v_id_sql, 'SQL', 'SELECT codigo, nombre, apertura_cierre, DECODE(apertura_cierre, ''A'',

''0:ROJO'',''R'', ''0:AMARILLO|2:ROJO'') color FROM diarios');

 pkxls.set_propiedad_sql(v_id_sql, 'SQL_COLUMNA_SELECTOR_ESTILO', 'S');

 -- Se crean dos celdas con valores fijos con estilos

 pkxls.excel_celda(v_id_hoja, 0, 1, 'C', 'CELDA EN ROJO', 25, v_id_estilo1);

 pkxls.excel_celda(v_id_hoja, 1, 1, 'C', 'CELDA EN AMARILLO', 25, v_id_estilo2);

 pkxls.generar_xls();

END;

Resultado: (Si tiene A en la columna APERTURA_CIERRE pinta el registro de rojo y si tiene R pinta el

registro de amarillo, pero la columna 2 de rojo).

Preparar en base de datos y ejecutar en Forms

Se puede hacer todo el proceso en código de base de datos llamando a pkxlsbd en vez de pkxls y luego

hacer la ejecución en Forms, de esta forma el código queda compatible para ser ejecutado en base de datos

con GAL_EXCEL o directamente en el programa de Forms. Una vez se han establecido las propiedades y

antes de llamar al procedimiento generar_excel hay que recuperar la configuración de base de datos

mediante pkxls.recupera_configuracion_pkxlsbd(); y luego ya se podría llamar a pkxls.generar_xls();

Hoja de Cálculo Simple

Se puede realizar una hoja de cálculo muy simple que únicamente tenga una SQL y no sea necesario

especificar ningún tipo de propiedad a las columnas llamando directamente a

PKXLS.SQL_SIMPLE('<sql>');

Ejemplo:

pkxls.sql_simple('SELECT codigo "Código", nombre "Nombre", apertura_cierre "Tipo" FROM diarios');

119

Lectura de hojas de cálculo

Para leer desde un programa de Forms un archivo de hoja de cálculo, habrá que incluir la librería

“pklibxls.pll”.

Para obtener los datos almacenados en las celdas se usará la función “pkxls.cargar_hoja_calculo (p_archivo,

p_numero_hoja, p_ignorar_celdas_vacias, p_permitir_conexion_directa, p_en_ias, p_inicializar_hojas)”.

• p_archivo: Ruta completa al archivo a cargar. Si la ejecución es en Forms 12c es importante el

parámetro p_en_ias para indicar dónde se encuentra el archivo.

• p_numero_hoja: Número de hoja a cargar, si se pasa a NULL se cargarán todas.

• p_ignorar_celdas_vacias: Si se pasa ‘S’ las celdas vacías serán ignoradas, pero si se pasa ‘N’ se

cargarán con valor NULL.

• p_permitir_conexion_directa: Puede recibir los siguientes valores:

o N: No se utiliza ninguna tabla temporal en base de datos, el archivo se lee en memoria y

se devuelven directamente los valores de las celdas. Este método es el ideal para hojas de

cálculo pequeñas.

o S: Se intentará hacer la carga a través de una conexión directa de Java a la base de datos,

para archivos muy grandes es la opción más rápida.

o R: Igual que “S” pero es exclusivo para archivos XLSX y la velocidad de carga es

infinitamente más rápida con archivos muy grandes. Este método tiene las siguientes

limitaciones:

▪ No se evalúan las fórmulas antes de hacer la lectura.

▪ Los campos numéricos se devuelven siempre como carácter y no recupera las

fórmulas de las celdas.

▪ Los valores no se pueden obtener con el método “pkxlsbd.get_tabla_excel()”,

hay que usar siempre la consulta SELECT con la tabla

“TABLE(pkxlsbd.get_pipe_tabla_excel())”

• p_en_ias: Si se está ejecutando en Forms 12c indica en dónde hace referencia el parámetro

“p_archivo”, si en p_en_ias se pasa el valor de TRUE el archivo debe de encontrarse en el servidor

de aplicaciones, si se pasa FALSE el archivo debe de encontrase en el equipo del usuario y para

ser procesado tiene que internamente cargarse en el servidor de aplicaciones para poder ser leído.

• p_inicializar_hojas: Si se pasa TRUE en este parámetro, por cada hoja leída llamará a

pkxls.crea_hoja y a pkxls.set_propiedad_hoja con la propiedad ‘NOMBRE_HOJA’.

Esta función carga el archivo en la base de datos y devuelve un VARCHAR2 con el resultado de la lectura,

siendo OK que la lectura ha sido correcta y ERROR en caso de no poderse realizar la carga.

Para acceder al resultado de la carga, se puede realizar de varias formas.

• A través de una consulta SELECT:

SELECT id_hoja hoja, x, y, valor_number, valor_char

 FROM TABLE(pkxlsbd.get_pipe_tabla_excel());

• Recoger un array con los valores de las celdas mediante la función “pkxlsbd.get_tabla_excel()”.

El resultado de la función es un array del tipo pkxlsbd.tabla_excel.

Para obtener las hojas que componen la hoja de cálculo se usará la función

“pkxls.get_nombres_hojas_xls(p_archivo, p_en_ias)”.

• p_archivo: Ruta completa al archivo a cargar. Si la ejecución es en Forms 12c es importante el

parámetro p_en_ias para indicar dónde se encuentra el archivo.

• p_en_ias: Si se está ejecutando en Forms 12c indica en dónde hace referencia el parámetro

“p_archivo”, si en p_en_ias se pasa el valor de TRUE el archivo debe de encontrarse en el servidor

de aplicaciones, si se pasa FALSE el archivo debe de encontrase en el equipo del.

120

Esta función devolverá un array del tipo PKPANTALLAS.VARCHAR2_TABLA con el ID de la hoja y su

nombre. Ejemplo:

DECLARE

 t_hojas pkpantallas.varchar2_table;

 v_id PLS_INTEGER;

BEGIN

 t_hojas := pkxls.get_nombres_hojas_xls('c:\temp\test.xls', FALSE);

 IF t_hojas.COUNT() != 0 THEN

 v_id := t_hojas.FIRST();

 WHILE v_id IS NOT NULL LOOP

 pkpantallas.log('id: ' || v_id || ', nombre: ' || t_hojas(i));

 v_id := t_hojas.NEXT(v_id);

 END LOOP;

 END IF;

END;

IMPORTANTE: Si ya se ha ejecutado PKXLS.CARGAR_HOJA_CALCULO indicando el parámetro

P_INICIALIZAR_HOJAS con el valor TRUE ya no hace falta volver a acceder al archivo, se puede obtener

el número total de hojas del archivo con pkxls.get_propiedad_excel('NUMERO_HOJAS') y al nombre

de cada hoja con pkxls.get_propiedad_hoja(id_hoja, 'NOMBRE_HOJA').

NOTA: Los campos de tipo fecha vienen en cómo número y para convertirlos en fecha hay que sumar ese

número a la fecha TO_DATE('30-12-1899', 'DD-MM-YYYY').

Modificación de hojas de cálculo

Archivo a modificar en el servidor de Forms o en el equipo del usuario

Para modificar desde un programa de Forms un archivo de hoja de cálculo (formato XLS), habrá que incluir

la librería “pklibxls.pll”, y ejecutar lo siguiente:

• pkxls.inicializa();

• pkxls.excel_celda(<hoja>, <fila>, <columna>, 'C', <valor>, 30): Se

puede ejecutar tantas veces como celdas se quieran modificar. Los valores comienzan en 1.

• pkxls.modifica_archivo_excel(p_archivo, p_archivo_destino,

p_en_ias): Devuelve OK si todo ha ido correcto y ERROR si ha fallado.

o p_archivo: Ruta del archivo a modificar.

o p_archivo_destino: Ruta del archivo en donde se grabará el archivo modificado. Si se

pasa NULL se modificará directamente el archivo indicado en “p_archivo”.

o p_en_ias: Hay que indicar TRUE si el archivo está en el servidor de aplicaciones y

FALSE si el archivo se encuentra en el equipo del usuario.

Ejemplo:

DECLARE

 v_resultado VARCHAR2(30);

BEGIN

 pkxls.inicializa();

 pkxls.excel_celda(1, 1, 1, 'C', 'PRUEBA1', 30);

 pkxls.excel_celda(1, 1, 2, 'C', 'PRUEBA2', 30);

 pkxls.excel_celda(1, 1, 3, 'C', 1234, 30);

 pkxls.excel_celda(1, 2, 3, 'C', 7321, 30);

 v_resultado := pkxls.modifica_archivo_excel(p_archivo => 'C:\Temp\formato.xls', p_archivo_destino =>

'C:\Temp\formato_modificado.xls', p_en_ias => FALSE);

END;

121

Archivo de plantilla almacenado en la base de datos

Si el archivo a del que se va a partir para la modificación se encuentra almacenado en la base de datos los

la llamada a pkxls.modifica archivo_excel será la siguiente:

pkxls.modifica_archivo_excel(p_id_archivo, p_archivo_destino, p_procedimiento_modificacion,

p_trigger_modificacion, p_permitir_conexion_directa, p_visualizar_archivo)

Devuelve OK si todo ha ido correcto y ERROR si ha fallado. Parámetros que recibe:

o p_id_archivo: Identificador del archivo almacenado en base de datos.

o p_archivo_destino: Ruta del archivo en el equipo del usuario en en donde se grabará el

archivo una vez modificado.

o p_procedimiento_modificacion: Este parámetro si no se pasa a la llamada se

considerará el valor NULL. Procedimiento de base de datos que se ejecutará para que

aplique los cambios sobre el archivo. En este procedimiento se puede utilizar

pkxlsbd.get_tabla_excel() para recuperar las celdas y los procedimientos de pkxlsbd para

modificar el archivo.

o p_trigger_modificacion: Este parámetro si no se pasa a la llamada se considerará el

valor NULL. Trigger personalizado que será ejecutado en el programa que hace la

llamada. En este procedimiento se puede utilizar pkxlsbd.get_tabla_excel() para

recuperar las celdas y los procedimientos de pkxls para modificar el archivo.

o p_permitir_conexion_directa: Este parámetro si no se pasa a la llamada se considerará

el valor ‘S’. Si se utiliza p_procedimiento_modificacion o p_trigger_modificacion, se

realiza una carga del archivo antes de aplicar la modificación. Para más información de

este parámetro ver la información del parámetro con este mismo nombre de la función

“pkxls.cargar_hoja_calculo”.

o p_visualizar_archivo: Este parámetro si no se pasa a la llamada se considerará el valor

TRUE. Si se pasa el valor TRUE una vez grabado el archivo en el equipo del usuario se

abrirá con la aplicación asociada al tipo de archivo generado.

Ejemplo:

 IF pkxls.modifica_archivo_excel(p_id_archivo => p_id_archivo_plantilla,

 p_archivo_destino => p_cli_archivo_grabar,

 p_procedimiento_modificacion => 'pkformulasstd.procesar_hoja_calculo()',

 p_permitir_conexion_directa => 'N') != 'OK' THEN

 msg.mensaje('PROCE', 'GENERAL');

 END IF;

Gestión de correos electrónicos

Envío

Para el envío es necesario que esté correctamente configurado el servidor SMTP, se puede configurar en

varios niveles, en caso de no estar disponible un servidor SMTP se probará al siguiente nivel:

• Usuario: Mediante el programa MAIL_SENDERS se pueden indicar los parámetros para el envío

de correo electrónicos:

o Servidor SMTP: Dirección del servidor de SMTP asociado al usuario.

o Puerto: Puerto TCP en el que escucha el servidor SMTP, por defecto el 25.

o Dirección de Correo: Dirección de correo de origen del mensaje.

o Usuario: En caso de que el servidor requiera validación se introducirá el nombre del

usuario del servidor SMTP.

o Password: En caso de que el servidor requiera validación se introducirá la password del

usuario en el servidor SMTP.

o Requiere Validación: Se activará la check cuando el servidor SMTP requiera de un

usuario y contraseña para enviar el correo.

• Alerta: Se puede indicar una parametrización específica para una alerta (módulo de alertas). Esta

configuración se realiza en el mantenimiento de parámetros generales del menú, programa

122

U_MPRMEN, en la pestaña “Notificaciones / Alertas”. Los campos necesarios son iguales que a

nivel de usuario.

• SMTP Genérico: En el mantenimiento de parámetros generales de menú se puede indicar un

servidor SMTP Genérico que se usará cuando el Usuario / Alerta no tienen un servidor específico.

La secuencia de envío es la siguiente:

• Inicializar.

• Opcionalmente cambiar el remitente del mensaje.

• Incorporar el asunto del mensaje.

• Incorporar el cuerpo del mensaje.

• Indicar los destinatarios.

• Adjuntar archivos.

• Procesar envío.

Inicializar

En primer lugar, se ejecutará la inicialización del envío del correo electrónico con la instrucción:

PK_EMAIL.INICIALIZAR('<código de usuario>');

Opcionalmente cambiar el remitente del mensaje

Para cambiar el remitente que se le asigna por defecto al usuario se puede ejecutar:

PK_EMAIL.SET_EMAIL_REMITENTE('<email>');

Incorporar el asunto del mensaje

Para añadir el asunto del mensaje se ejecutará:

PK_EMAIL.SET_ASUNTO('<texto_del_asunto>');

Incorporar el cuerpo del mensaje

Para añadir el texto al cuerpo del mensaje hay que tener en cuenta que puede ir en texto plano, en formato

html o mixto, es decir, va tanto en texto plano como html y el dispositivo receptor mostrará según sus

capacidades el que mejor se adapte.

Para añadir texto plano al cuerpo del mensaje se utiliza el procedimiento:

PK_EMAIL.SET_CUERPO('<texto plano del cuerpo del mensaje>');

Para añadir texto en formato html se utiliza el procedimiento:

PK_EMAIL.SET_CUERPO_HTML('<texto html del cuerpo del mensaje>');

Indicar los destinatarios

Para añadir destinatarios se puede ejecutar tantas veces como destinatarios del mensaje existan el

procedimiento:

PK_EMAIL.ADD_DESTINATARIO('<tipo>', '<dirección>');

El parámetro <tipo> puede contener los siguientes valores:

• TO: Destinatarios principales del mensaje.

• CC: Destinatarios que irán en copia del mensaje.

• BCC: Destinatarios que irán con copia oculta del mensaje.

123

Adjuntar archivos

Hay varias formas de adjuntar archivos a un mensaje:

• El archivo se encuentra almacenado en Libra en la tabla ARCHIVOS_ERP. En este caso se

ejecutará: PK_EMAIL.ADD_ADJUNTO_X_ID(<id_archivo>), en donde <id_archivo> es el

identificador del archivo en la tabla ARCHIVOS_ERP.

• El archivo se tiene en una variable de tipo BLOB. En este caso se ejecutará:

PK_EMAIL.ADD_ADJUNTO_BLOB(<variable_blob>, <nombre_archivo>);

• (OBSOLETA, debe de utilizarse: PK_EMAIL.ADD_ADJUNTO_BLOB). El archivo se

encuentra en un directorio de la base de datos. En este caso se ejecutará:

PK_EMAIL.ADD_ADJUNTO('<archivo>'), en donde <archivo> es la ruta completa al archivo a

adjuntar. En el caso de no indicar la ruta completa se asumirá que se encuentra en el directorio

parametrizado para adjuntos en parámetros generales de Libra o en su defecto en BLOB_TEMP.

• El archivo que se desea adjuntar es el resultado del proceso de informe del Generador de Informes.

En este caso se ejecutará: PK_EMAIL.ADD_ADJUNTO_GI('<p_informe>',

'<p_nombre_archivo>', '<p_idioma>', '<p_empresa>', '<p_usuario>', ‘<p_plantilla_valores>’,

‘<p_tipo_archivo>’, ‘<p_configuracion>’);

o p_informe: Código del informe a ejecutar.

o p_nombre_archivo: Nombre del archivo a generar.

o p_idioma: Código del idioma a utilizar para las etiquetas

o p_empresa: Código de la empresa con la que se ejecutará el informe.

o p_usuario: Código del usuario con el que se ejecutará el informe.

o p_plantilla_valores: Sí el informe tiene guardada plantillas de valores, se puede indicar

la plantilla a usar.

o p_tipo_archivo: Valores posibles:

▪ EXCELXML: Genera el archivo en formato hoja de cálculo. Si la extensión del

archivo es XLS ó XLSX y está configurado GAL_EXCEL se generará en

formato nativo, salvo que en el informe tenga informado que utiliza tablas

GLOBAL TEMPORARY.

▪ HTML

▪ CSV: Separado por comas

▪ TXT: Texto plano

o p_configuracion: Si el informe tiene varias configuraciones de columnas, se puede

indicar en este parámetro el código de configuración de columnas a utilizar.

Se pueden adjuntar tantos archivos al mensaje como sea necesario y también se pueden mezclar llamadas

de ADD_ADJUNTO_X_ID con ADD_ADJUNTO y ADD_ADJUNTO_GI.

NOTA: El directorio en donde se encuentran los archivos deben tener permisos de lectura para el motor de

Java de Oracle, para ello se debe de ejecutar (Si la base de datos está en Linux cambiar 'directorio*' por

'directorio/*'):

exec dbms_java.grant_permission('usuario LIBRA en mayúsculas', 'java.io.FilePermission', 'dir*', 'read');

Ejemplo:

exec dbms_java.grant_permission('LIBRA','java.io.FilePermission', 'C:\Oracle\dir\blobtemp*', 'read');

Procesar envío.

Para procesar el envío finalmente se ejecutará la función: PK_EMAIL.ENVIAR(). El resultado que

devuelve es 'OK' en caso de que el envío se realiza correctamente o 'ERROR' en caso de producirse algún

fallo. En este último caso quedará registrado en LIBRA_LOG el motivo del error, también se puede

consultar por código el resultado del último envío llamando a la función PK_EMAIL.GET_ULTIMO_RDO

y el detalle del error llamando a la función PK_EMAIL.GET_ULTIMO_TEXTO_ERROR.

124

Ejemplo:

DECLARE

 v_resultado VARCHAR2(30);

BEGIN

 PK_EMAIL.INICIALIZAR('EDISA');

 PK_EMAIL.SET_ASUNTO('TEXTO ASUNTO');

 PK_EMAIL.SET_CUERPO('CUERPO TEXTO PLANO');

 PK_EMAIL.SET_CUERPO_HTML('<H1>CUERPO HTML</H1>');

 PK_EMAIL.ADD_DESTINATARIO('TO', 'correo@dominio.com');

 v_resultado := PK_EMAIL.ENVIAR();

END;

Funciones de control

Existen una serie de funciones de control que permitirán realizar verificaciones antes de enviar el correo,

• PK_EMAIL.HAY_SERVIDOR_SMTP: Se puede ejecutar después de llamar a

PK_EMAIL.INICIALIZAR, y devolverá TRUE en caso de existir un servidor parametrizado para

realizar el envío del correo y FALSE en caso contrario.

• PK_HAY_REMITENTE: Devuelve TRUE en caso de que exista una dirección de email de remite

del mensaje, FALSE en caso contrario. Se puede ejecutar antes de PK_EMAIL.ENVIAR,

• PK_HAY_DESTINATARIOS: Devuelve TRUE si se ha especificado algún destinatario al

mensaje y FALSE en caso contrario. Se puede ejecutar antes de PK_EMAIL.ENVIAR.

Descarga

Mediante el paquete PK_EMAIL también se puede realizar la descarga de correos de cuentas POP3. En

primer lugar, se deben de configurar las cuentas POP3 en el mantenimiento de parámetros generales de

menú, programa U_MPRMEN.

• Código: Identificador único que se le asigna la cuenta POP3, este código será necesario luego para

indicar la cuenta de correo de la que se quiere descargar el correo.

• Descripción: Descripción breve de la cuenta de correo.

• Servidor POP3: Dirección IP o nombre del servidor de POP3 en donde se encuentra la cuenta.

• Puerto: Puerto TCP en el que escucha el servidor de POP3.

• Usuario: Usuario de la cuenta de correo.

• Password: Contraseña del usuario de la cuenta de correo.

• Usuario Libra: Código del usuario de Libra al que quedarán asociados los archivos adjuntos

descargados.

• Función Proceso Mensaje: (Opcional). Función de base de datos que se invocará por cada

mensaje una vez descargado para poder automatizar tareas. Esa función debe de devolver el

resultado (si es correcto debe devolver OK) y recibe como parámetro el ID del mensaje.

125

Ejemplo:

CREATE OR REPLACE FUNCTION PRUEBA_EMAIL(p_id_mensaje NUMBER) RETURN VARCHAR2 IS

BEGIN

 RETURN('OK');

END;

Para lanzar la descarga de los correos de un buzón POP3 se llamará al procedimiento:

PK_EMAIL.PROCESAR_SERVIDOR_POP3('<código cuenta pop3>'). En <código cuenta pop3> se

pasará el código de la cuenta configurada en los parámetros generales de menú.

Los mensajes quedarán almacenados en las tablas:

• EMAIL_GESTION_CORREOS: Almacena los correos descargados.

o ID: Identificador numérico único asignado al mensaje.

o CODIGO_SERVIDOR_POP3: Código del servidor POP3 del qué procede el mensaje.

o FECHA: Fecha del mensaje.

o FECHA_DESCARGA: Fecha en la que se realizó la descarga del mensaje.

o NUMERO_VECES_PROCESADO: Número de veces que se ha ejecutado la “Función

Proceso Mensaje” asociada a la cuenta POP3.

o FECHA_ULTIMO_PROCESO: Fecha en la que se realizó la última llamada a la

“Función Proceso Mensaje”.

o RESULTADO_ULTIMO_PROCESO”: Resultado que devolvió en la última llamada a

la “Función Proceso Mensaje”.

o REMITENTE: Dirección de correo electrónico de la que procede el mensaje.

o DESTINARIO: Lista de destinatarios del mensaje.

o ASUNTO: Texto del asunto.

o TEXTO_BODY: Texto del correo electrónico en formato de texto plano, si el mensaje

viene en formato HTML exclusivamente este campo estará en blanco.

o TEXTO_BODY_HTML: Texto del correo electrónico en formato HTML, si el mensaje

viene en formato de texto plano exclusivamente este campo estará en blanco.

• EMAIL_GESTION_CORREOS_ADJUNTOS: Almacena los adjuntos de los correos:

o ID: Identificador del mensaje, se utiliza para relacionar los adjuntos con

EMAIL_GESTION_CORREOS.

o ID_ARCHIVO: Identificador asignado al adjunto en la tabla ARCHIVOS_ERP, que es

el almacenamiento real del archivo.

o NOMBRE_ARCHIVO: Nombre del archivo tal y como venía en el mensaje.

Gestión de archivos XML.

Carga de archivo

El proceso de carga de un archivo se basa en su recorrido de forma secuencial, en cada nodo del XML se

puede indicar la forma de procesarlo, insertar registros en una tabla, invocar la ejecución de una función de

base de datos o realizar ambas a la vez.

Inicialización

En primer lugar, hay que parametrizar la lectura del XML, para ello en primer lugar es obligatorio ejecutar

la instrucción: PKXML.XML_INICIALIZA_PARSER(p_namespace_automatico => TRUE).

Configuración de Nodo

A continuación, por cada nodo que se quiere contemplar en la lectura hay que parametrizarlo llamando a la

función PK_XML.XML_CREA_NODO_PARSER, esta función devuelve un dato de tipo PLS_INTEGER

que identifica el nodo y que es necesario identificar para luego poder configurar los items de ese nodo. La

función recibe los siguientes parámetros:

• p_etiqueta: Este parámetro es obligatorio. Es la ruta XPATH completa del nodo a procesar, por

ejemplo: /Clientes/Cliente/AlbaranesCliente/Albaran

126

• p_funcion: Este parámetro es opcional, en él se indica la función que se debe de ejecutar por cada

nodo indicado en P_ETIQUETA. Los parámetros que recibe la función son variables y se

identifican más adelante en la configuración de los items del nodo (Ver

PK_XML.CREA_CAMPO_NODO_PARSER). La función debe devolver un VARCHAR2 con

el texto OK en el caso de que el proceso sea correcto y otro valor en caso de que se produzca un

error, en este último caso se cancelará el proceso de lectura del XML.

• p_tabla: Este parámetro es opcional. Nombre de la tabla en donde se debe de insertar el registro

que contiene el nodo indicado en P_ETIQUETA. Los campos se identifican más adelante en la

configuración de los items del nodo (Ver PK_XML.CREA_CAMPO_NODO_PARSER).

• p_ignorar_errores: Si se pasa S en este parámetro, un error en un nodo no finaliza el parseo de

todo el XML, sino que se sigue con el siguiente nodo. (Por defecto tiene el valor N, de forma de

que, si no se indica, un error para el parseo).

• p_modo_sql: Permite indicar la acción a realizar en la tabla de destino. Los valores posibles son

INSERT (por defecto), UPDATE o MERGE.

• p_funcion_exception: Indica una función que se va a invocar en caso de que un nodo no se pueda

parsear. Una utilidad clara para esta función es guardar los registros que no se puedan insertar. La

firma de la función debe contener todos los campos que se parsean en el XML.

Configuración de Items del nodo

Por cada item del nodo que interese ser almacenado en la tabla o por la función parametrizada en

PK_XML.XML_CREA_NODO_PARSER hay que parametrizarlo llamando a la función

PK_XML_CREA_CAMPO_NODO_PARSER que devuelve un PLS_INTEGER que identifica el campo.

La función recibe los siguientes parámetros:

• p_id_nodo: (Obligatorio). Identificador del nodo, devuelto por

PK_XML.XML_CREA_NODO_PARSER.

• p_campo: (Opcional). Se utiliza cuando al crear el nodo se ha indicado una Tabla y en este

parámetro se indica el campo de la tabla en donde se quiere guardar el valor que tiene el item.

• p_parametro: (Opcional). Se utiliza cuando al crear el nodo se ha indicado una función, se indica

en qué parámetro hay que pasar el valor del item al hacer la llamada a la función.

• p_valor_fijo: (opcional). En vez de leer el dato de un item del XML se utiliza un valor fijo

proporcionado en este parámetro, tanto para hacer el insert en la tabla parametrizada o en el

parámetro de la función parametrizada.

• p_etiqueta_valor: (Opcional). Ruta XPATH completa al campo del que se quiere obtener el valor.

No hay problema en usar un campo que se encuentra en un nodo de nivel anterior o posterior al

nodo que se está procesando. Ejemplo: /Clientes/Cliente/Codigo

• p_tipo: Se usa para indicar el tipo de dato. Si no se indica nada se considera VARCHAR2. Los

valores posibles son:

o VARCHAR2

o NUMBER

o DATE

o CLOB

• p_mascara: Se usa cuando se indica p_tipo => 'NUMBER', indica la máscara de formato con la

que viene el número en el XML. Ejemplo: p_mascara => '999999D90'.

• p_nls_numeric_characters: Se usa cuando se indica p_tipo => 'NUMBER', para indicar cual es

el carácter separador de millares y el de decimales, si el número viene con el formato 3443.23, hay

que pasar p_nls_numeric_characters => '.,'.

• p_nls_language: Para el parseo de los campos de tipo DATE cuando no se especifica una máscara,

indica la configuración regional que se utiliza para el parseo a campo date.

• p_funcion_transformacion: Función PL/SQL a utilizar para transformar una columna. Esta

función debe tener un único parámetro de tipo varchar2 en la firma que recibirá el valor de la

columna que queremos transformar.

127

• p_es_pk: Para las operaciones de MERGE y UPDATE es obligatorio conocer qué campos son

clave primaria en la tabla destino. Este parámetro es de tipo booleano, por lo que hay que indicar

TRUE para aquellos campos que sean clave primaria. Si no se indica el parámetro se asume que

no es clave primaria.

• p_solo_funcion: Permite para una columna determinada que no se inserte en la tabla destino, y

que su valor solo se pase en el caso de que el parseo del XML tenga como destino una función

PL/SQL, y para la función de excepción. Un ejemplo claro de esto es si en el XML viaja el rowid

de la tabla origen.

Ejecutar el proceso de lectura

El XML para procesar debe de estar almacenado en una variable XMLTYPE, en el paquete PK_XML se

disponen de funciones para cargarlo desde un archivo (PK_XML.CARGA_XML_DESDE_FIC) o desde

una dirección WEB (PK_XML.LEE_XML_DESDE_URL).

Para invocar la lectura del XML hay que llamar a la función PK_XML.PARSEAR_XML, la función

devolverá OK si la lectura se ha realizado correctamente o el código de error devuelto por la función que

cancelase el proceso. Ejemplo: v_resultado := PK_XML.PARSEAR_XML(v_xml);

DECLARE

 v_xml XMLTYPE;

 v_empresa VARCHAR2(5):= '013';

 v_id_nodo PLS_INTEGER;

 v_id_campo PLS_INTEGER;

 v_resultado VARCHAR2(30);

BEGIN

 v_xml := pk_xml.carga_xml_desde_fic('BLOB_TEMP', 'elXMl.xml');

 pk_xml.xml_inicializa_parser(p_namespace_automatico => TRUE);

 v_id_nodo := pk_xml.xml_crea_nodo_parser(p_etiqueta => '/Cli/Cl/Albaranes/Albaran',

 p_funcion => 'F_PRUEBA_ELIAS_LECTURA_XML',

 p_tabla => 'PRUEBA_ELIAS_LECTURA_XML');

 v_id_campo := pk_xml.xml_crea_campo_nodo_parser(p_id_nodo => v_id_nodo,

 p_campo => 'EMPRESA',

 p_parametro => 'P_EMPRESA',

 p_valor_fijo => v_empresa);

 v_id_campo := pk_xml.xml_crea_campo_nodo_parser(p_id_nodo => v_id_nodo,

 p_campo => 'CODIGO_CLIENTE',

 p_parametro => 'P_CODIGO_CLIENTE',

 p_etiqueta_valor => '/Cli/Cl/Codigo');

 v_id_campo := pk_xml.xml_crea_campo_nodo_parser(p_id_nodo => v_id_nodo,

 p_campo => 'NOMBRE_CLIENTE',

 p_parametro => 'P_NOMBRE_CLIENTE',

 p_etiqueta_valor => '/Cli/Cl/Nombre');

 v_id_campo := pk_xml.xml_crea_campo_nodo_parser(p_id_nodo => v_id_nodo,

 p_campo => 'NUMERO_ALBARAN',

 p_parametro => 'P_NUMERO_ALBARAN',

 p_etiqueta_valor => '/Cli/Cl/Albaranes/Alb/No');

 v_id_campo := pk_xml.xml_crea_campo_nodo_parser(p_id_nodo => v_id_nodo,

 p_campo => 'IMPORTE_ALBARAN',

 p_parametro => 'P_IMPORTE_ALBARAN',

 p_etiqueta_valor => '/Cli/Cl/Albaranes/Alb/Im');

 v_resultado := pk_xml.parsear_xml(v_xml);

 pkpantallas.log('RESULTADO PRUEBA: ' || v_resultado);

END;

Generación de archivos XML

Para generar un archivo XML, hay que parametrizar los nodos, los atributos y los campos que van a tener

los nodos.

Inicialización

Todo documento XML debe de tener un nodo raíz que engloba la totalidad del resto de los nodos, en el

proceso de inicialización se llama a la función a PK_XML.XML_INICIALIZA, esta función devuelve un

PLS_INTEGER que identifica al nodo raíz y recibe por parámetro la etiqueta del nodo Raíz. Ejemplo:

v_id_nodo_raiz := pk_xml.xml_inicializa('Clientes');

128

Incluir nodos al documento

Se pueden añadir tantos nodos como sea necesario, un nodo puede estar si es necesario a una tabla o puede

tomar valores fijos. Para crear un nodo se llamará a la función PK_XML.XML_CREA_NODO, esta

función devolverá un PLS_INTEGER que identifica al nodo y que será necesario para luego añadirle

campos. La función recibe los siguientes parámetros:

• p_id_nodo_padre: Obligatorio, se indica el nodo del que va a colgar. Todo nodo va a tener un

nodo padre, ya que como mínimo hay un nodo raíz que engloba a todos.

• p_etiqueta_registro: Obligatorio. Etiqueta XML que va agrupar los campos de cada registro.

• p_etiqueta_grupacion: Opcional. Etiqueta que agrupa a todos los registros.

• p_tabla: Opcional. Nombre de la tabla que debe de recorrerse para obtener los registros a incluir

en el XML.

• p_where: Opcional. Condición a aplicar a los registros de la tabla.

• p_order_by: Opcional. Ordenación de los registros a obtener.

Nota sobre variables en p_where: en la where se pueden usar variables de tipo :xxxx, esas variables serán

enlazadas de forma dinámica. Para indicar los valores a esas variables hay que llamar al procedimiento

PK_XML.SET_VARIABLE('<variable>', <valor>);

Por ejemplo, si en la where se utiliza “codigo_empresa = :p_empresa” habrá que enlazar “:p_empresa” con

el valor correspondiente con PK_XML.SET_VARIABLE('P_EMPRESA', '013');

Incluir campos a un nodo

Para incluir campos a un nodo hay que llamar a la función PK_XML.XML_CREA_CAMPO_NODO, esta

función devuelve un PLS_INTEGER que identifica al campo y recibe los siguientes parámetros:

• p_id_nodo: Obligatorio, se indica el nodo del que va a colgar el campo.

• p_etiqueta: Obligatorio, etiqueta que va a tener el valor del campo en el XML.

• p_campo_tabla: Opcional, si el nodo está asociado a tabla, se indica de que campo debe de

obtenerse al valor a incluir en la etiqueta.

• p_valor_fijo: Opcional, valor que llevará la etiqueta, sin necesidad de ser recuperado de la tabla.

• p_obligatorio: Se utiliza exclusivamente cuando se indica “p_campo_tabla” y los valores que

recibe son ‘S’ y ‘N’. Si se pasa el valor ‘N’ y el campo indicado en p_campo_tabla es NULL ya

no se incluye la etiqueta en el XML. Si no se indica, el valor por defecto es ‘S’.

Incluir atributos a un nodo.

En XML los nodos pueden contener información en forma de atributos, para ello se incorpora la función

PK_XML.XML_CREA_ATRIBUTO_NODO que devuelve un PLS_INTEGER que identifica el atributo

y recibe los siguientes parámetros:

• p_id_nodo: Obligatorio, se indica el nodo del que va a colgar el atributo.

• p_etiqueta: Obligatorio, etiqueta que va a tener el atributo dentro del nodo.

• p_campo_tabla: Opcional, si el nodo está asociado a tabla, se indica de que campo debe de

obtenerse al valor a incluir en el atributo.

• p_valor_fijo: Opcional, valor que llevará el atributo, sin necesidad de ser recuperado de la tabla.

Ejecutar el proceso de generación

Una vez parametrizada la estructura del XML se dispone de la función PK_XML.CALCULA_SQL_XML()

que devuelve el XMLTYPE con el contenido del XML.

En el paquete PK_XML hay funciones para gestionar el XMLTYPE, por ejemplo, se podría guardar en

archivo mediante PK_XML.GRABA_XML_EN_FICHERO.

129

Ejemplo:

DECLARE

 v_id_nodo_raiz PLS_INTEGER;

 v_id_nodo_generico PLS_INTEGER;

 v_id_nodo_clientes PLS_INTEGER;

 v_id_nodo_albaranes PLS_INTEGER;

 v_id_campo PLS_INTEGER;

 v_id_atributo PLS_INTEGER;

 v_xml XMLTYPE;

BEGIN

 v_id_nodo_raiz := pk_xml.xml_inicializa('Clientes');

 v_id_nodo_generico := pk_xml.xml_crea_nodo(p_id_nodo_padre => v_id_nodo_raiz,

 p_etiqueta_registro => 'DatosExportacion');

 v_id_campo := pk_xml.xml_crea_campo_nodo(p_id_nodo => v_id_nodo_generico,

 p_etiqueta => 'UsuarioExportacion',

 p_valor_fijo => 'ELIASF');

 v_id_campo := pk_xml.xml_crea_campo_nodo(p_id_nodo => v_id_nodo_generico,

 p_etiqueta => 'Fecha',

 p_campo_tabla => 'TO_CHAR(SYSDATE, ''DD/MM/YYYY'')');

 v_id_nodo_clientes := pk_xml.xml_crea_nodo(p_id_nodo_padre => v_id_nodo_raiz,

 p_etiqueta_registro => 'Cliente',

 p_tabla => 'clientes c',

 p_where => 'c.codigo_empresa = :p_empresa',

 p_order_by => 'c.codigo_rapido');

 v_id_atributo := pk_xml.xml_crea_atributo_nodo(p_id_nodo => v_id_nodo_clientes,

 p_etiqueta => 'CodigoEnAtributo',

 p_campo_tabla => 'c.codigo_rapido');

 v_id_campo := pk_xml.xml_crea_campo_nodo(p_id_nodo => v_id_nodo_clientes,

 p_etiqueta => 'Codigo',

 p_campo_tabla => 'c.codigo_rapido');

 v_id_campo := pk_xml.xml_crea_campo_nodo(p_id_nodo => v_id_nodo_clientes,

 p_etiqueta => 'Direccion',

 p_campo_tabla => 'c.direccion',

 p_obligatorio => 'N');

 v_id_campo := pk_xml.xml_crea_campo_nodo(p_id_nodo => v_id_nodo_clientes,

 p_etiqueta => 'Nombre',

 p_campo_tabla => 'c.nombre');

 v_id_nodo_albaranes := pk_xml.xml_crea_nodo(p_id_nodo_padre => v_id_nodo_clientes,

 p_etiqueta_registro => 'Albaran',

 p_etiqueta_agrupacion => 'Albaranes',

 p_tabla => 'albaran_ventas av',

 p_where => 'av.cliente = c.codigo_rapido AND av.empresa =

:p_empresa');

 v_id_campo := pk_xml.xml_crea_campo_nodo(p_id_nodo => v_id_nodo_albaranes,

 p_etiqueta => 'Numero',

 p_campo_tabla => 'av.numero_albaran');

 v_id_campo := pk_xml.xml_crea_campo_nodo(p_id_nodo => v_id_nodo_albaranes,

 p_etiqueta => 'Importe',

 p_campo_tabla => 'ROUND(av.importe_bruto)');

 pk_xml.set_variable('p_empresa', '013');

 v_xml := pk_xml.calcula_sql_xml();

 pk_xml.graba_xml_en_fichero(v_xml, 'BLOB_TEMP', 'prueba.xml', NULL);

END;

130

Recursos HTML en programas de Forms.

Con el fin de extender las funcionalidades de Oracle Forms, se ha implementado a través de los objetos

BEAN de clases Java, cargar el navegador web y en el cargar recursos HTML que previamente se descargan

en el equipo local del usuario.

Programa Archivos de Recursos [U_RESOURCES]

Este programa sirve de repositorio de los recursos disponible, los cuales mediante la librería “pklibrsc.pll”

se descargarán en el equipo local del usuario, controlando su versionado a partir del SHA1 de los mismos.

Cabe destacar que este programa no solo sirve para recursos HTML, sino cualquier tipo de archivo que se

quiera enviar al equipo local del usuario.

Otra característica, es que el concepto de TIPO_RECURSO el cual a través del prefijo “GLOBAL_”

permite registrar aquellos recursos que sean comunes a un tipo, realizando su descarga previa.

La nomenclatura de recursos HTML a seguir es la siguiente

TIPO FORMS_HTML

NOMBRE <NOMBRE_FMB> al que pertenece

PKLIBRSC.PLL

Esta PLL tiene registrado el paquete “PKRESOURCES” que contiene métodos para la carga de los recursos

en el equipo local.

• FUNCTION habilitado RETURN BOOLEAN; Retorna si está disponible su uso. Esto será cierto

en un entorno 6.4.2 o superior.

• FUNCTION carga_recurso(p_tipo VARCHAR2, p_codigo VARCHAR2) RETURN VARCHAR2;

Cargar el recurso solicitado. Retorna la ruta donde fue descargado.

• FUNCTION carga_archivo_bd_temp(p_nombre_archivo VARCHAR2) RETURN VARCHAR2;

Cargar el fichero almacenado PK_BLOB2BD.GET_FICHERO en el directorio temporal de

recursos, retornando la ruta al mismo.

131

• FUNCTION carga_archivo_erp_temp(p_id_archivo NUMBER) RETURN VARCHAR2; Cargar

desde ARCHIVOS_ERP el archivo identificado por ID_ARCHIVO en el directorio temporal de

recursos, retornando la ruta al mismo.

• PROCEDURE borra_archivo_temp(p_nombre_archivo VARCHAR2); Borra el archivo del

almacenamiento temporal resultado de una carga anterior.

• PROCEDURE borra_archivo_erp_temp(p_id_archivo NUMBER); Borra el archivo del

almacenamiento temporal resultado de una carga anterior.

• PROCEDURE limpia_archivos_temp; Eliminar todo el contenido del directorio de

almacenamiento temporal.

• PROCEDURE limpia_directorio_temp(p_solo_antiguos BOOLEAN DEFAULT FALSE); En el

caso de enviar “p_solo_antiguos” a FALSE se comporta del mismo modo que el anterior método.

En el caso de enviar con valor TRUE, se borran solo aquellos que han sido cargados mediante

llamadas a “carga_archivo_erp_temp”, los cuales registran en una variable global todos los

archivos generados.

PKLIBWEBBROWSER.PLL

Esta librería se basa en el código de “PKLIBMENUADF” el cual incluye un paquete PKWEBBROWSER

con una serie de métodos que permiten gestionar las pestañas con navegador integrado en el programa de

inicio (BPM, Widgets, Comunidades…)

Para esta librería, se ha limpiado todo lo referente a las pestañas, registrando un único BEAN Java en el

cual residirá el navegador web y sobre el que propagar los eventos de sus métodos.

• PROCEDURE inicio(p_ventana…); Método en el que se registra el BEAN indicando una serie de

propiedades respecto a su tamaño, url de inicio…

• PROCEDURE when_new_item_instance; Agregar este código al disparador estándar del ITEM

del BEAN.

• PROCEDURE when_window_resized(p_ventana VARCHAR2); Agregar este código al disparador

estándar para que el navegador sea responsive.

• PROCEDURE when_window_activated(p_ventana VARCHAR2); Agregar este código al

disparador estándar para que el navegador sea responsive.

• PROCEDURE ejecutar_javascript(p_javascript VARCHAR2); Permite enviar un JavaScript al

navegador. Evento asíncrono.

• PROCEDURE cambiar_url(p_url VARCHAR2); Permite cambiar la URL del navegador.

• FUNCTION ejecutar_javascript(p_javascript VARCHAR2) RETURN VARCHAR2; Permite

enviar un JavaScript al navegador del cual se espera respuesta para ser tratada. Es un evento

síncrono.

• PROCEDURE ejecutar_javascript_gzip_bd; Permite enviar como JavaScript el contenido de

PK_BLOB2BD, el cual se espera que esté comprimido en GZIP. Método Asíncrono.

• FUNCTION ejecutar_javascript_gzip_bd RETURN VARCHAR2; Permite enviar como JavaScript

el contenido de PK_BLOB2BD, el cual se espera que esté comprimido en GZIP y recuperar su

respuesta. Método síncrono.

• PROCEDURE ejecutar_javascript_bd; Permite enviar como JavaScript el contenido de

PK_BLOB2BD el cual previamente comprimirá como GZIP. Método asíncrono.

• FUNCTION ejecutar_javascript_bd RETURN VARCHAR2; Permite enviar como JavaScript el

contenido de PK_BLOB2BD el cual previamente comprimirá como GZIP y recuperar su

respuesta. Método síncrono.

• PROCEDURE cerrar_navegador; Cerrar el navegador, limpiando sus recursos. No es necesario

aunque si recomendable.

132

Manual de uso en programa

Agregar las librerías “pklibrsc.pll” y “pklibwebbrowser.pll” al programa.

Crear parámetro “recurso_inicializado” con valor por defecto a N

Esto nos permite evitar volver a cargar el recurso en el método dónde se realice la carga del recurso, asociar

el BEAN al navegador y por último ejecutar el JavaScript para mostrar los datos en el recurso HTML.

Registrar los siguientes disparadores

WHEN-WINDOW-RESIZED

pkwebbrowser.when_window_resized(:system.event_window);

WHEN-WINDOW-ACTIVATED

pkwebbrowser.when_window_activated(:system.event_window);

BLOQUE-ITEM - WHEN-NEW-ITEM-INSTANCE

pkwebbrowser.when_new_item_instance;

KEY-EXIT

IF NVL(:parameter.recurso_inicializado, 'N') = 'S' THEN

 pkwebbrowser.cerrar_navegador;

 pkresources.limpia_archivos_temp;

END IF;

DISPSTD.KEY_EXIT;

Ejemplo de carga de recurso HTML y envío evento JavaScript.

--Cargar recurso HTML

IF NVL(:parameter.recurso_inicializado,'N') = 'N' THEN

 v_directorio_recurso := pkresources.carga_recurso(p_tipo => :parameter.resource_tipo, p_codigo =>

:parameter.resource_codigo);

 pkwebbrowser.inicio(p_bean_area => 'B6.BEAN_WWW', p_url => v_directorio_recurso || 'index.html',

p_ajuste_horizontal_bean => 0.05, p_ajuste_vertical_bean => 0.25);

 :parameter.recurso_inicializado := 'S';

END IF;

--Lanzar generación CLOB

f_generar_javascript_bd(p_empresa => :global.codigo_empresa);

pkwebbrowser.ejecutar_javascript_bd;

133

Salida gráfica del programa “Trazabilidad Multilote”

134

Editor Visual HTML

El editor visual HTML se abre en una ventana flotante similar a la siguiente:

Para que un programa pueda hacer uso del editor HTML debe de incorporar la librería: pkeditorhtml.pll

Inicializar

El primer paso que hay que ejecutar (y únicamente una vez) es procedimiento

PKEDITORHTML.INICIALIZAR();, de esta forma se indica que se desea utilizar el editor HTML.

Propiedades.

A continuación, hay que indicar el comportamiento que se desea que tenga el editor, para ello se indican

propiedades mediante PKEDITORHTML.SET_PROPIEDAD('<codigo_propiedad>', '<valor_propiedad');

Las propiedades disponibles son las siguientes:

• ACTIVA_CAMPO_ASUNTO: Si se pasa el valor S en <valor_propiedad>, mostrará un campo

a mayores donde se le solicita al usuario un Asunto, si no se pasa ese campo estará oculto al

usuario. El texto del asunto puede ser recuperado de forma independiente del texto HTML una vez

el usuario cierra el editor.

• ACTIVA_CAMPO_PARA: Si se pasa el valor S en <valor_propiedad>, mostrará un campo a

mayores donde se le solicita al usuario direcciones de correo electrónico. Estas direcciones pueden

ser recuperadas de forma independiente del texto en HTML una vez el usuario cierra el editor.

• ACTIVA_CAMPO_CC: Si se pasa el valor S en <valor_propiedad>, mostrará un campo a

mayores donde se le solicita al usuario direcciones de correo electrónico “Con copia”. Estas

direcciones pueden ser recuperadas de forma independiente del texto en HTML una vez el usuario

cierra el editor.

• ACTIVA_CAMPO_CCO: Si se pasa el valor S en <valor_propiedad>, mostrará un campo a

mayores donde se le solicita al usuario direcciones de correo electrónico “Con copia oculta”. Estas

direcciones pueden ser recuperadas de forma independiente del texto en HTML una vez el usuario

cierra el editor.

• ETIQUETA_PARA: Permite personalizar en <valor_propiedad> un texto diferente a la etiqueta

que va a tener el campo “Para”.

• ETIQUETA_CC: Permite personalizar en <valor_propiedad> un texto diferente a la etiqueta que

va a tener el campo “Con copia”.

• ETIQUETA_CCO: Permite personalizar en <valor_propiedad> un texto diferente a la etiqueta

que va a tener el campo “Con copia oculta”.

135

• ETIQUETA_LISTA_ASUNTO: Permite personalizar en <valor_propiedad> un texto diferente

a los textos fijos que puede seleccionar el usuario a incluir en el asunto. Ver apartado: Incluir

etiquetas fijas.

• ETIQUETA_LISTA_CUERPO: Permite personalizar en <valor_propiedad> un texto diferente

a la etiqueta del campo de textos fijos que puede seleccionar el usuario a incluir en el cuerpo. Ver

apartado: Incluir etiquetas fijas.

• ETIQUETA_LISTA_IMAGEN: Permite personalizar en <valor_propiedad> un texto diferente

a la etiqueta del campo de imágenes prefijadas que pueden ser incluidas en el cuerpo. Ver apartado:

Incluir imágenes.

• VALOR_INICIAL_PARA: Contenido que va tener el campo “Para” cuando se inicie el editor.

Lleva implícito un ACTIVA_CAMPO_PARA.

• VALOR_INICIAL_CC: Contenido que va tener el campo “Con copia” cuando se inicie el editor.

Lleva implícito un ACTIVA_CAMPO_CC.

• VALOR_INICIAL_CCO: Contenido que va tener el campo “Con copia oculta” cuando se inicie

el editor. Lleva implícito un ACTIVA_CAMPO_CCO.

• TEXTO_INICIAL_ASUNTO: Texto que va a contener el campo Asunto de forma inicial, si se

indica, automáticamente se activa el campo asunto, sin necesidad de indicar la propiedad

ACTIVA_CAMPO_ASUNTO.

• TEXTO_INICIAL_CUERPO: Texto HTML que va mostrarse en el editor HTML al iniciarse.

• PIXELS_ANCHO: Permite indicar el ancho inicial de la ventana del editor, por defecto es 1024.

• PIXELS_ALTO: Permite indicar el alto inicial de la ventana del editor, por defecto es 768.

Incluir etiquetas fijas

Se permite añadir campos de tipo LIST-ITEM en donde se muestren constantes que el usuario podrá

incorporar al los campos “Asunto” y “Cuerpo”, estos campos pueden ser valores para ayudar al usuario a

configurar el Parser, es decir, que el usuario seleccione “Nombre Cliente” y se incorpore el texto

{clientes.nombre} en el punto en donde se encuentra el cursor .

Para incluir etiquetas hay que llamar al procedimiento PKEDITORHTML.ADD_ETIQUETA('<Texto de

la etiqueta>', '<valor de la etiqueta>'); por cada etiqueta que se quiera incluir. Ejemplo:

PKEDITORHTML.ADD_ETIQUETA('Nombre Cliente', '{clientes.nombre}');

Incluir imágenes

Se pueden incluir imágenes en el cuerpo del mensaje, pero estas imágenes tienen que estar prefijadas en el

mantenimiento de parámetros generales de menú (U_MPRMEN), en la pestaña “Imágenes Públicas”.

En esa pantalla se introduce una descripción para la imagen, la URL de la imagen pública en Internet y

opcional el ancho y alto en pixels al que debe de ajustarse la imagen.

Si se utiliza Forms 12c y está configurado un directorio público de imágenes, se pueden subir imágenes al

servidor de aplicaciones mediante un plug-in en la botonera vertical.

Ejecutar y recuperar los datos introducidos por el usuario.

Para visualizar el editor hay que ejecutar el procedimiento PKEDITORHTML.MOSTRAR().

Una vez se cierra se pueden recuperar los datos del editor mediante la función

PKEDITORHTML.GET_PROPIEDAD('<código_propiedad>);. Las propiedades disponibles son las

siguientes:

• ASUNTO: Texto del campo Asunto.

• CUERPO: Texto en HTML del cuerpo.

• PARA: Valor del campo “Para”.

• CC: Valor del campo “Con copia”.

• CCO: Valor del campo “Con copia oculta”.

136

Gestión de Archivos

Para gestionar archivos en una tabla únicamente es necesario que la tabla tenga los siguientes campos:

• NOMBRE_ARCHIVO de tipo VARCHAR2(500): El nombre del campo puede variar, no tiene

que ser necesariamente NOMBRE_ARCHIVO, pero lo recomendable sería utilizar ese nombre.

Este campo será el que será visible por el usuario y le hay que asignar la clase CLASE_ARCHIVO

o CLASE_ARCHIVO_GRID dependiendo si el campo está o no en un multiregistro.

• ID_ARCHIVO de tipo NUMBER: Este campo no será visible al usuario, por lo que no tendrá

especificado lienzo. En este campo se va almacenar el puntero al archivo que realmente

almacenado en la tabla ARCHIVOS_ERP.

La subida y descarga de archivos los gestiona el entorno, lo único que hay que gestionar dentro del fuente

es el borrado del registro. Al borrar un registro que tenga un campo con valor en ID_ARCHIVO hay que

ejecutar el procedimiento pk_blob2bd.borra_archivo(<empresa>, <id_archivo>, <tabla>) en el disparador

PRE-DELETE del bloque.

Este procedimiento recibe 3 parámetros:

• <p_empresa>. Código de la empresa, normalmente se pasará :global.codigo_empresa

• <p_id_archivo>. Valor del campo ID_ARCHIVO del bloque.

• <p_tabla>. Nombre de la tabla que tiene el nombre del archivo.

• <p_usuario>. Código del usuario, normalmente se pasará :global.usuario.

Ejemplo:

IF :b2.id_archivo IS NOT NULL THEN

 pk_blob2bd.borra_archivo(p_empresa => :global.codigo_empresa,

 p_id_archivo => :b2.id_archivo,

 p_tabla => 'CRMEXPEDIENTES_LIN_NOTAS',

 p_usuario => :global.usuario);

END IF;

Borrar un archivo en la base de datos

El archivo debe de encontrarse en un directorio definido en ORACLE mediante CREATE DIRECTORY

<NOMBRE_DIRECTORIO> AS '<ruta>';

Por ejemplo, CREATE DIRECTORY BLOB_TEMP AS '/u01/bte';

El directorio es necesario que tenga permisos de Oracle y de Java, para ello se le asignarán de la siguiente

forma:

GRANT READ, WRITE ON DIRECTORY BLOB_TEMP TO <USUARIO_LIBRA>;

exec dbms_java.grant_permission('<USUARIO_LIBRA>','java.io.FilePermission','/u01/bt/*',

'read,write,execute,delete');

Por ejemplo:

GRANT READ, WRITE ON DIRECTORY BLOB_TEMP TO LIBRA;

exec dbms_java.grant_permission('LIBRA','java.io.FilePermission', '/u01/bt/*', 'read,write,execute,delete');

Si se han concedido correctamente los permisos para borrar un archivo simplemente hay que ejecutar la

función:

PK_BLOB2BD.BORRAR_ARCHIVO_EN_DIRECTORIO('<DIRECTORIO>', '<NOMBRE_ARCHIVO');

Esta función devolverá OK si ha podido borrar el archivo y ERROR en caso contrario.

• <DIRECTORIO>: Código del directorio creado con CREATE DIRECTORY.

• <NOMBRE_ARCHIVO>: Nombre del archivo que se encuentra en la ruta a la que apunta el

directorio <DIRECTORIO>

137

Obtener el listado de archivos de un directorio de la BD.

Mediante la función PK_BLOB2BD.GET_LISTA_ARCHIVOS('<directorio>'); devolverá una tabla de

tipo PKPANTALLAS.VARCHAR2_TABLE con la lista de archivos que contiene el directorio. Ejemplo:

DECLARE

 t_archivos PKPANTALLAS.VARCHAR2_TABLE;

BEGIN

 t_archivos := PK_BLOB2BD.GET_LISTA_ARCHIVOS('BLOB_TEMP');

 FOR i IN 1..NVL(t_archivos.LAST, 0) LOOP

 PKPANTALLAS.LOG('ARCHIVO: ' || t_archivos(i));

 END LOOP;

END;

Comprimir un archivo en la base de datos

El archivo debe de encontrarse en una carpeta con permisos (Ver apartado: Borrar un archivo en la base de

datos, ya que los permisos son exactamente los mismos)

Para comprimir un archivo se ejecutará la función:

PK_BLOB2BD.COMPRIMIR_ARCHIVO('<DIRECTORIO>', '<ARCHIVO>', <P_BORRAR_ORIGINAL>);

Esta función devolverá OK si ha podido comprimir el archivo y ERROR en caso contrario. El archivo

comprimido tendrá el mismo nombre, pero se le añade la extensión “.zip”, por ejemplo, si se comprime

“prueba.pdf” el archivo resultante será “prueba.pdf.zip”.

• <DIRECTORIO>: Código del directorio creado con CREATE DIRECTORY.

• <ARCHIVO>: Nombre del archivo a comprimir y que se encuentra en la ruta a la que apunta el

directorio <DIRECTORIO>

• <P_BORRAR_ORIGINAL>: Si se pasa TRUE y la compresión es correcta el archivo original se

borra, en caso de pasar FALSE se mantiene.

Comprimir varios archivos en un único ZIP en base de datos

Todos los archivos deben de encontrarse en una carpeta con permisos (ver apartado: Borrar un archivo en

la base de datos, ya que los permisos son exactamente los mismos).

En primer lugar, hay que indicar el directorio en donde se va a realizar la operación compresión, llamando

al: pk_blob2bd.inicializar_compresion('<directorio>');

Ejemplo:

pk_blob2bd.inicializar_compresion('BLOB_TEMP');

Por cada archivo que se desea meter en el ZIP hay que llamar al procedimiento

pk_blob2bd.agregar_archivo_compresion:

pk_blob2bd.agregar_archivo_compresion(<nombre_archivo>, <nombre_archivo_en_zip>);

• <nombre_archivo>: Nombre del archivo que se encuentra en el directorio indicado en

“pk_blob2bd.inicializar_compresion”.

• <nombre_archivo_en_zip>: Ruta y nombre que se le dará al archivo dentro del ZIP. En el caso

de pasar NULL o no indicar este parámetro el archivo se meterá en el raíz del ZIP y con el mismo

nombre que el indicado en el parámetro <nombre_archivo>.

Para ejecutar el proceso de compresión se llamará al procedimiento:

pk_blob2bd.comprimir(<nombre_archivo_destino>, <borrar_originales>);

• <borrar_originales>: Valores posibles:

o S: En el caso de que el proceso de compresión sea realizado satisfactoriamente, los

archivos originales serán borrados.

o F: Se borran los archivos independientemente del resultado de la compresión.

o N: Los archivos no serán borrados, aunque el resultado del proceso sea correcto.

138

• <nombre_archivo_destino>: Nombre del archivo que se generará. Al nombre indicado se le

añadirá la extensión .ZIP de forma automática.

Descomprimir un archivo en la base de datos

• El archivo debe de encontrarse en una carpeta con permisos (ver apartado: Borrar un archivo en

la base de datos, ya que los permisos son exactamente los mismos).

• Si se descomprime un archivo con directorios, el nombre del archivo será la concatenación del

directorio (cambiando las barras de separación de directorio por guiones bajos) y el nombre del

archivo.

Para descomprimir un archivo se ejecutará la función:

PK_BLOB2BD.DESCOMPRIMIR_ARCHIVO('<DIRECTORIO>', '<ARCHIVO>', <P_BORRAR_ORIGINAL>);

Esta función devolverá OK si ha podido descomprimir el archivo y ERROR en caso contrario. El archivo

comprimido puede tener varios archivos en su interior, llamando a

PK_BLOB2BD.GET_LISTA_ARCHIVOS(); devolverá una lista de tipo

PKPANTALLAS.VARCHAR2_TABLE con los archivos que contenía el zip.

• <DIRECTORIO>: Código del directorio creado con CREATE DIRECTORY.

• <ARCHIVO>: Nombre del archivo a descomprimir y que se encuentra en la ruta a la que apunta

el directorio <DIRECTORIO>

• <P_BORRAR_ORIGINAL>: Si se pasa TRUE y la descompresión es correcta el archivo

comprimido original se borra, en caso de pasar FALSE se mantiene.

Ejemplo:

DECLARE

 t_archivos pkpantallas.varchar2_table;

 t_archivos_zip pkpantallas.varchar2_table;

 v_directorio VARCHAR2(100) := 'BLOB_TEMP';

BEGIN

 t_archivos := pk_blob2bd.get_lista_archivos(v_directorio);

 FOR i IN 1..t_archivos.COUNT LOOP

 IF UPPER(SUBSTR(t_archivos(i), -4)) = '.ZIP' THEN

 --Descomprimimos el .ZIP y lo borramos

 IF pk_blob2bd.descomprimir_archivo(v_directorio, t_archivos(i), TRUE) = 'OK' THEN

 t_archivos_zip := pk_blob2bd.get_lista_archivos();

 FOR z IN 1..t_archivos_zip.COUNT LOOP

 pkpantallas.log('ARCHIVO: ' || t_archivos(i) || ' -> ' || t_archivos_zip(z));

 END LOOP;

 END IF;

 ELSE

 pkpantallas.log('ARCHIVO: ' || t_archivos(i));

 END IF;

 END LOOP;

END;

Impresión de archivos PDF

Para lanzar la impresión de un archivo PDF hay que añadir la librería PKLIBFILE al programa.

El archivo a imprimir puede encontrarse en un directorio físico del ordenador del usuario o en una dirección

WEB.

Para realizar la impresión se ejecutará el procedimiento, STDFILE.IMPRIME_DOCUMENTO, este

procedimiento recibe los siguientes parámetros:

• p_archivo_o_url: Ruta al archivo PDF a imprimir o a la URL donde se encuentra el documento.

• p_tipo: Si en p_archivo_o_url se indicó una ruta a un archivo local se deberá de pasar 'PDF', si se

indicó una URL, hay que pasar 'URL_PDF'.

• p_impresora: Nombre de la impresora del sistema operativo por la que se quiere realizar la

impresión.

139

Para imprimir un archivo almacenado en ARCHIVOS_ERP simplemente hay que usar la función

STDFILE.IMPRIME_DOCUMENTO_ARCHIVOS_ERP(<empresa>, <id_archivo>, <tabla>,

<impresion_por_windows>, <impresora>):

• <empresa>: Código de la empresa en la que está validado el usuario.

• <id_archivo>: Identificador del archivo de ARCHIVOS_ERP a imprimir.

• <tabla>: Tabla a la que está asociado el archivo.

• <impresion_por_windows>: Si se pasa TRUE, quiere decir que lo que se va a indicar en

<impresora> es la cola del ordenador del usuario en la que se debe de realizar la impresión, si se

pasa FALSE en <impresora> hay que pasar el código de una impresora lógica de Libra.

• <impresora>: Código de la impresora lógica de Libra o de la cola de impresión del ordenador

donde se va a realizar la impresión, depende del parámetro <impresion_por_windows>.

Cambiar codificación de archivos de texto

Hay casos en donde es necesario generar archivos con codificación ANSI o UTF-8. En la librería

PKLIBFILE existe la función para realizar la conversión de archivos usando la función:

STDFILE.CONVIERTE_CODIFICACION(p_codificacion_origen, p_codificacion_destino, p_nombre_archivo).

• p_codificacion_origen: Hay que indicar la codificación en la que se encuentra el archivo, valores

posibles (si se pasa a NULL se intentará detectar de forma automática la codificación del archivo):

o ISO-8859-1

o UTF-8

o UTF-8+BOM

• p_codificacion_destino: Código de la codificación a la que se quiere llevar el archivo, las

codificaciones son iguales que las de origen (si se pasa a NULL se asumirá la codificación de la

variable NLS_LANG del servidor de Forms.

• p_nombre_archivo: Ruta completa al archivo que se quiere convertir de codificación.

La función devuelve OK si la conversión se ha realizado correctamente, si se ha producido un error

devolverá el motivo de este.

Consultar la codificación de un archivo de texto

Se dispone de la función STDFILE.GET_TIPO_CODIFICACION(archivo) que devolverá UTF8 o

WE8ISO8859P1 según esté codificado el archivo, (En Forms 12c el archivo tiene que estar en el servidor

de aplicaciones).

Obtener lista de archivos de un directorio

En base de datos

Para obtener el listado de archivos que se encuentran en un directorio de la base de datos se utiliza la función

PKBLOB2BD.GET_LISTA_ARCHIVOS(<p_directorio>). Esta función devuelve un array de

VARCHAR2 de tipo PKPANTALLAS.VARCHAR2_TABLE.

• <p_directorio>: Código del directorio creado con CREATE DIRECTORY

Ejemplo:

DECLARE

 t_archivos pkpantallas.varchar2_table;

BEGIN

 t_archivos := pkblob2bd.get_lista_archivos(p_directorio => ‘BLOB_TEMP’);

 FOR z IN 1..t_archivos_zip.COUNT LOOP

 pkpantallas.log('ARCHIVO: ' || t_archivos(i) || ' -> ' || t_archivos_zip(z));

 END LOOP;

END;

140

En equipo del usuario o en el servidor de aplicaciones

El programa ha de tener incorporada la librería pklibfile.pll. Para obtener el listado de archivos que se

encuentran un directorio del equipo del usuario o del servidor de aplicaciones se utiliza la función:

STDFILE.F_LISTA_ARCHIVOS_DIRECTORIO(<p_directorio>, <p_en_ias>, <p_desde_fecha>,

<p_hasta_fecha>, <p_patron_nombre_archivo>). Esta función devuelve un array de VARCHAR2 de tipo

PKPANTALLAS.VARCHAR2_TABLE.

• <p_directorio>: Directorio en donde se encuentran los archivos.

• <p_en_ias>: Si se pasa TRUE <p_directorio> hará referencia a una carpeta en el servidor de

aplicaciones, si se pasa FALSE hará referencia a una carpeta en el equipo del usuario.

• <p_desde_fecha>: Filtro desde fecha de última modificación.

• <p_hasta_fecha>: Filtro hasta fecha de última modificación.

• <p_patron_nombre_archivo>: Filtro a aplicar sobre el nombre de archivos.

Ejemplo:

DECLARE

 t_archivos pkpantallas.varchar2_table;

BEGIN

 t_archivos := stdfile.f_lista_archivos_directorio(p_directorio => '/Users/usuario/Temp',

 p_en_ias => FALSE,

 p_desde_fecha => NULL,

 p_hasta_fecha => TRUNC(SYSDATE -1),

 p_patron_nombre_archivo => '*.png');

 FOR i IN 1..t_archivos.count LOOP

 pkpantallas.log(t_archivos(i));

 END LOOP;

END;

Gestión de fecha de última modificación de un archivo

Obtener fecha de un archivo en base de datos

Para obtener la fecha de última modificación de un archivo que se encuentra en la base de datos se utilizará

la función PK_BLOB2BD.FECHA_MODIFICACION_ARCHIVO(<p_directorio>, <p_archivo>).

• p_directorio: Código del directorio creado con CREATE DIRECTORY

• p_archivo: Nombre del archivo del que se quiere obtener la fecha de última modificación.

Ejemplo:

DECLARE

 v_fecha DATE;

BEGIN

 v_fecha := pk_blob2bd.fecha_modificacion_archivo(p_directorio => ‘BLOB_TEMP’, p_archivo =>

‘nombre_archivo.xml’);

 pkpantallas.log(‘archivo con fecha: ‘ || TO_CHAR(v_fecha, ‘DD/MM/YYYY’));

END;

Obtener fecha de un archivo en servidor de aplicaciones o en el equipo del usuario

Para obtener la fecha de un archivo que se encuentra en el servidor de aplicaciones o en el equipo del

usuario se utilizará la función stdfile. fecha_ult_modificacion(<p_archivo>, <p_en_ias>) que se encuentra

en la librería pklibfile.pll.

• p_ archivo: Ruta completa al archivo del que se quiere obtener la fecha de última modificación.

• p_en_ias: Si se pasa TRUE <p_archivo> hará referencia a un archivo en el servidor de

aplicaciones, si se pasa FALSE hará referencia a un archivo en el equipo del usuario.

Ejemplo:

DECLARE

 v_fecha DATE;

BEGIN

 v_fecha := stdfile.fecha_ult_modificacion(p_directorio => ‘c:\temp\archivo.xml’, p_en_ias => FALSE);

 pkpantallas.log(‘archivo con fecha: ‘ || TO_CHAR(v_fecha, ‘DD/MM/YYYY’));

END;

141

Cambiar la fecha de última modificación de un archivo en servidor de aplicaciones o equipo del

usuario.

Para cambiar la fecha de última modificación de un archivo que se encuentra en el servidor de aplicaciones

o en el equipo del usuario se utilizará el procedimiento stdfile.set_fecha_ult_modificacion(<p_archivo>,

<p_fecha>, <p_en_ias>) que se encuentra en la librería pklibfile.pll.

• p_ archivo: Ruta completa al archivo del que se quiere cambiar la fecha de última modificación.

• p_fecha: Fecha a asignar como fecha de última modificación del archivo indicado en p_archivo.

• p_en_ias: Si se pasa TRUE <p_archivo> hará referencia a un archivo en el servidor de

aplicaciones, si se pasa FALSE hará referencia a un archivo en el equipo del usuario.

Ejemplo:

BEGIN

 stdfile.set_fecha_ult_modificacion(p_archivo => ‘c:\temp\archivo.xml’, p_fecha => SYSDATE, p_en_ias =>

FALSE);

END;

Parser de textos para reemplazar etiquetas

Se dispone del paquete PKBDPARSER que generar un texto partiendo de una plantilla que contiene

etiquetas, esas etiquetas serán reemplazadas por los valores de campos de tablas de la base de datos

Por ejemplo, partiendo de esta plantilla:

Estimado Sr. {clientes.

} le informamos que dispone de la factura

{facturas_ventas.numero_serie}/{facturas_ventas.numero_factura} de fecha

{facturas_ventas.fecha_factura} disponible para descarga.

Una vez aplicado el paquete PKBDPARSER sobre la plantilla de ejemplo se obtendrá algo similar a esto:

ARIDOS LOPEZ E HIJOS le informamos que dispone de la factura FV/3433 de fecha 08/06/2011

disponible para descarga.

Para realizar el proceso del ejemplo hay que indicar qué factura es la que tiene usar para reemplazar el

texto. El ejemplo para ejecutar el parseador para obtener el resultado del ejemplo sería el siguiente:

DECLARE

 v_resultado VARCHAR2(30);

 v_cadena_parseada CLOB;

BEGIN

 pkbdparser.inicializar();

 pkbdparser.set_variable('numero_factura', 3433);

 pkbdparser.set_variable('numero_serie', 'FV');

 pkbdparser.set_variable('ejercicio', '2011');

 pkbdparser.set_variable('empresa', '013');

 pkbdparser.set_propiedad_tabla('FACTURAS_VENTAS', 'WHERE_DEFECTO', 'numero_factura = {numero_factura} AND

numero_serie = {numero_serie} AND ejercicio = {ejercicio} AND empresa = {empresa}');

 pkbdparser.set_propiedad_tabla('CLIENTES', 'WHERE_DEFECTO', 'codigo_rapido = {facturas_ventas.cliente} AND

codigo_empresa = {empresa}');

 pkbdparser.set_propiedad('PLANTILLA', 'Estimado Sr. {clientes.nombre} le informamos que dispone de la factura

{facturas_ventas.numero_serie}/{facturas_ventas.numero_factura} de fecha {facturas_ventas.fecha_factura}

disponible para descarga.');

 v_resultado := pkbdparser.parsear_plantilla();

 v_cadena_parseada := pkbdparser.get_resultado_parseado();

END;

142

Tipos de etiquetas

Se contemplan los siguientes tipos de etiquetas

• Variable: Valor indicado previamente en una variable, tendrá el formato {variable}. Ejemplo:

{numero_factura}

• Valor de tabla: Indica que debe sustituirse esa etiqueta por el valor del campo de una determinada

tabla. Esta etiqueta tendrá el siguiente formato: {tabla.campo}. Ejemplo:

{facturas_ventas.cliente}. En caso de estar en una zona de repetición, es decir, entre etiquetas de

inicio de repetición y de fin de repetición se usará {alias.campo} en vez de {tabla.campo}

Se pueden usar modificadores para alterar el resultado, en el caso de usar modificadores el formato

será {alias.campo:modificador1|valor

modificador1|modificador2|valor_modificador2|..|modificador n| valor modificador n}, por

ejemplo: {crmexpedientes_cab.fecha_alta|FM|DD/MM/HH24:MI:SS}. Modificadores posibles:

o FM: Máscara de formato.

o TYPE: Tipo de campo, Valores posibles:

▪ HTML, Se le aplica al resultado la función pk_xml.codifica_texto_to_html, para

reemplazar los caracteres especiales del HTML por la codificación correcta.

También se reemplazan los retornos de carro por

▪ ESHTML: Se supone que se el resultado ya viene codificado en HTML y por

tanto no se le debe de alterar.

• De repetición, se dividen en otras dos etiquetas:

o Inicio de repetición: Tiene el siguiente formato. {R:tabla:alias:condición:orden:R},

dentro de condición se podrán usar etiquetas de valor de tabla o de variable (las del punto

anterior). Ejemplo: {R:albaran_ventas_lin:AVL:articulo = {articulos.codigo_articulo}

AND empresa = {empresa}:numero_albaran DESC:R}. En caso de no indicar una

condición o una ordenación se dejará en blanco, es decir:

{R:albaran_ventas_lin:AVL:::R}, en ese caso se usará la condición y la ordenación que

tenga asignada la tabla por defecto.

o Fin de repetición: Indica que todo lo que se encuentra entre “Inicio de repetición” y “Fin

de repetición” se procesará tantas veces como filas devuelva la consulta sobre la tabla

indicada en la etiqueta de inicio. Tendrá el siguiente formato: {E:alias:E}, ejemplo:

{E:AVL:E}

• Generador de informes: Ejecuta un generador de informes y el resultado del informe lo incluye

en el texto. El formato de la etiqueta es:

{GI:<informe>:<idioma>:<empresa>:<usuario>:<plantilla de valores de filtro>:<tipo>:<código

de configuración>}.

o <informe>: Código del informe del generador de informes a ejecutar.

o <idioma>: Idioma en el que se generarán las etiquetas de los campos.

o <empresa>: Código de la empresa sobre la que se ejecutará el informe.

o <usuario>: Usuario de Libra con el que se ejecutará el informe, el usuario determinará

los permisos de ejecución.

o <plantilla de valores de filtro>: Valores de filtro a aplicar al informe.

o <tipo>: Si se indica HTML se incluirán al resultado etiquetas para maquetar el resultado

en formato HTML. Si lo que se está formateando es un campo de tipo HTML lo detectará

y no es necesario incluirlo. Si no se está formateando un campo de tipo HTML y no se

indica nada en este campo el resultado será formateado en texto plano.

o <código de configuración>: Si el informe tiene varias configuraciones de columnas, se

puede indicar la que se debe de utilizar.

Ejemplo: {GI:DIARIOS:01:013:EDISA:245:HTML:45} (Ejecuta el informe DIARIOS, con las

etiquetas en idioma 01, sobre la empresa 013, con los permisos del usuario EDISA, aplicando la

143

plantilla de valores por defecto 245, el resultado se genera con etiquetas HTML y utilizando la

configuración de columnas con código 45.

• Función de base de datos: Ejecuta la función de base de datos indicada que devuelva un resultado

en VARCHAR2 o en CLOB, con el formato {SF:<función a ejecutar>:EF}. A la función se le

pueden pasar los parámetros que sean necesarios obtenidos de variables, con {variable} o de un

campo con {tabla.campo}. Ejemplo: {SF:PRUEBA_FUNCION(p_numero_serie =>

{facturas_ventas.numero_serie}, p_numero_factura => {facturas_ventas.numero_factura}):EF}

• Imagen: En parámetros generales de menú, en la pestaña “Imágenes Públicas” se pueden

configurar enlaces a URLs que apunten a imágenes. Con el parseador se puede generar la etiqueta

HTML que haga referencia a esa imagen con: {IMGHTML:CODIGO}, por ejemplo:

{IMGHTML:GE5MOLW084CE8YLNPQFTI4DV5TN8F4}

• Modificación de propiedades, se dividen en:

o Variables: Permite modificar en un momento dado una variable, tiene el siguiente

formato: {SVA:<código de la variable>:<valor de la variable>:SVA}, Ejemplo:

{SVA:codigo_consgen:CONSGEN:SVA}

o Propiedades generales: Permite cambiar en un momento dado propiedades generales

del parseador, tiene el siguiente formato: {SPG:<código de la propiedad>:<valor de la

propiedad>:SPG}, Ejemplo: {SP:MASCARA_FECHAS:YYYY/MM/DD:SP}

o Propiedades de tablas: Permite cambiar en un momento dado propiedades generales de

una tabla, tiene el siguiente formato: {SPT:<código de tabla / alias>:<código de la

propiedad>:<valor de la propiedad>:SPT}, Ejemplo:

{SPT:PROGRAMAS_ERP:WHERE_DEFECTO:codigo={codigo_consgen}:SPT}

o Añadir columnas calculadas: Permite añadir columnas calculadas a una tabla y ser

usadas dentro del parseador como si fuese una columna más de la tabla, tiene el siguiente

formato: {ACT:<nombre de tabla / alias>:<nombre de columna>:<sentencia SQL para

obtener el resultado:ACT}. Ejemplo:

{ACT:CRMEXPEDIENTES_CAB:NUMERO_LINEAS:(SELECT COUNT(*) FROM

crmexpedientes_lin l WHERE l.numero_expediente =

crmexpedientes_cab.numero_expediente AND l.empresa =

crmexpedientes_cab.empresa):ACT}

Inicializar

Es obligatorio en primer lugar ejecutar la instrucción pkbdparser.inicializar();. Esta instrucción inicializa

estructuras internas del paquete para realizar el proceso.

Propiedades generales del proceso

Para establecer las propiedades generales del proceso se usará el procedimiento

pkbdparser.set_propiedad('<codigo_propiedad>', '<valor>');

Las propiedades que se pueden establecer son las siguientes:

• MASCARA_FECHAS: Máscara a aplicar a los campos de tipo fecha, en el caso de no especificar

esta propiedad se usará DD/MM/YYYY

• MASCARA_NUMEROS: Máscara a aplicar a los campos de tipo numérico, en el caso de no

especificar esta propiedad se realizará un TO_CHAR sin indicar ninguna máscara.

• PLANTILLA: Texto que contiene la plantilla a usar.

• TRAZA: Si se pasa el valor 'S' se guardará en LIBRA_LOG una traza interna para depurar del

proceso.

144

Variables

Las variables son valores que no se obtienen de ninguna tabla, por lo que hay que suministrárselos al

proceso, luego serán usadas en las etiquetas de tipo Variable.

Para declarar una variable hay que llamar al procedimiento pkbdparser.set_variable('<codigo de la

variable>', <valor>);. Por ejemplo: pkbdparser.set_variable('numero_factura', 3433);

Propiedades de tabla

Para ejecutar el proceso hay que limitar los registros de las tablas que se usan y en el caso de bloques de

repetición el orden en el que se procesarán, para ello se dispone del procedimiento

pkbdparser.set_propiedad_tabla('<alias>', '<propiedad>', '<valor>');. Por ejemplo:

pkbdparser.set_propiedad_tabla('CLIENTES', 'WHERE_DEFECTO', 'codigo_rapido =

{facturas_ventas.cliente} AND codigo_empresa = {empresa}');

• <alias>: Si es una tabla que se usa en un grupo repetitivo se indicará el alias del grupo repetitivo

en vez del nombre de la tabla.

• <propiedad>: Existen las siguientes propiedades:

o WHERE_DEFECTO: Condición que se aplicará al hacer la consulta de la tabla. Se

pueden usar etiquetas de tipo variable o de valor de tabla. Si en <alias> se indicó el alias

de un grupo repetitivo y en este grupo repetitivo se indicó una condición, esa condición

prevalecerá sobre el valor pasado en esta propiedad.

o ORDER_BY_DEFECTO: Condición de ordenación que se aplicará al consultar la tabla.

Al igual que en WHERE_DEFECTO, si en el repetitivo se indica una condición de

ordenación, esa condición de ordenación prevalecerá sobre la que se pasa en esta

propiedad.

Propiedades de columna

Permite añadir columnas calculadas a una tabla y ser usadas dentro del parseador como si fuese una columna

más de la tabla.

Para añadir una columna calculada hay que llamar al procedimiento

pkbdparser.add_columna_tabla('<alias>', '<nombre de columna>', '<sentencia SQL para obtener el

resultado>');

Ejemplo: pkbdparser.add_columna_tabla('CRMEXPEDIENTES_CAB', 'NUMERO_LINEAS', '(SELECT

COUNT(*) FROM crmexpedientes_lin l WHERE l.numero_expediente =

crmexpedientes_cab.numero_expediente AND l.empresa = crmexpedientes_cab.empresa)');

• <alias>: Si es una tabla que se usa en un grupo repetitivo se indicará el alias del grupo repetitivo

en vez del nombre de la tabla.

• <nombre de columna>: Nombre de la columna, que será luego usada en el texto como

alias.columna.

• <sentencia SQL para obtener el resultado>: Sentencia SQL que se debe de añadir a la SELECT

para obtener el resultado de la columna. Se puede indicar que la sentencia se obtenga de la

configuración de campos de tablas del generador de informes, para ello en este parámetro hay que

indicar GI:<tabla>.<campo>, de esta forma se buscará la parametrización del campo en la

configuración de tablas del generador de informes. Ejemplo: GI:CRMEMPRESAS.D_PAIS

Obtener el resultado

Para obtener el resultado en primer lugar hay que llamar a la función pkbdparser.parsear_plantilla();.

Está función devolverá OK en caso de tener éxito y ERROR en caso de producirse algún fallo. Si se produce

un fallo en LIBRA_LOG quedará el motivo del error.

Una vez se ejecutó el parser, si el resultado que se espera puede ser almacenado en un VARCHAR2, se

llamará a la función: pkbdparser.get_propiedad('RESULTADO_PARSEADO'); Para obtenerlo en una

variable CLOB se llamará a la función: pkbdparser.get_resultado_parseado();

145

Variables y parámetros globales

Variables globales

Las variables globales que están definidas en todos los programas de libra son:

• IDIOMA_USUARIO: Código del idioma que tiene el usuario en su ficha. No es el idioma del

mantenimiento de Idiomas, es el idioma para el que se buscan las traducciones de las etiquetas de

los programas. Si en la ficha del usuario no tiene definido contendrá el valor ‘01’.

• IDIOMA_EMPRESA: De momento no tiene uso, siempre tiene le valor 01.

• CODIGO_EMPRESA: Código de la empresa que está validada.

• NOMBRE_EMPRESA: Nombre de la empresa que está validada.

• FECHA_CONEXION: Fecha y hora en formato CHAR con formato DD/MM/YYYY

HH24:MI:SS en la que entró el usuario en Libra.

• MENUS_PERFILES: Código de menú del último programa en que entró el usuario. Es muy

importante recalcar que es el último programa en que entró el usuario, ya que si el usuario entra

en el programa A y por ventanas entra también en el programa B y vuelve al programa A el valor

de esta variable contendrá el código del programa B.

• FECHA_TRABAJO: Fecha de trabajo en formato CHAR con el formato definido por

:global.nls_date_format. Esta fecha se propone automáticamente en campos fecha que son

obligatorios y que el usuario intenta dejar en blanco.

• DESDE_PUESTO: Contiene el valor de la variable LIBRA_ID de libra6.ini con el que inició

sesión el usuario. Si no se especifica esa variable el menú al entrar pone el ella el valor de los

primeros 30 caracteres del nombre del ordenador de Windows.

• PERFIL: Perfil principal del usuario, el que tiene asociado en la ficha.

• SUPERUSUARIO: Si el usuario tiene la marca de superusuario contendrá el código del usuario

validado, si el usuario validado no es superusuario contendrá ‘EDISA’.

• USUARIO: Código del usuario de Libra validado.

• ROL_ACTIVO: Si el usuario tiene activada la selección manual de Rol al iniciar sesión, esta

variable contendrá el código de ROL con el que se ha validado el usuario.

• USUARIO_SO: Usuario del sistema operativo del equipo en el que se esta ejecutando Libra.

• EQUIPO_SO: Nombre del equipo en el que se está ejecutando Libra.

• IMPRESORA_WINDOWS: Cuando entra en el menú se inicializa con el nombre de la impresora

predeterminada que tiene el usuario en su ordenador. El usuario la puede cambiar para esa sesión

de libra (es decir, mientras no salga de libra) por otra y se cambia el valor de esta variable.

• PRUEBA_FALLOS: Contendrá el valor S si libra se está ejecutando en modo a prueba de fallos

y N en caso contrario. El modo a prueba de fallos consiste en que no se ejecutará ninguna

personalización de los programas, únicamente lo estándar.

• TRAZA: Contendrá el valor SI en el caso de que se esté ejecutando en modo de traza y NO en

caso contrario. Hay algunos programas que si activas en el menú en modo traza generan un archivo

.log del proceso que realizan.

• REG_FALLOS_TRADUCCION: Si tiene el valor S durante la traducción de los campos a otros

idiomas distintos de castellano la traducción no existe en etiquetas_erp_traducidas se guarda el

fallo en etiquetas_erp_fallo_traduccion.

• SEP_DIR: Separador de directorios en servidor de aplicaciones.

• SID_ESCRITORIO: Sid de Oracle con el que está conectado el Menú.

• IAS_CLIENTOSNAME: Contiene el nombre del sistema operativo del equipo cliente que

ejecuta Libra.

En programas dinámicos hay también un campo muy útil para personalizaciones

:PLANTILLA.CODIGO_PLANTILLA, contiene el código de la plantilla que tiene seleccionada el

usuario.

146

Parámetros disponibles para personalizaciones

A partir de la versión 5.3.2 de Libra, los programas disponen de 10 parámetros alfanuméricos

PARAMETER.PAxx (por ejemplo, PARAMETER.PA01) y 5 numéricos PARAMETER.PNxxx (por

ejemplo, PARAMETER.PN01) que pueden ser usados en cualquier personalización, tanto en códigos pl/sql

como para el paso de valores a estos parámetros en plug-ins.

Variables globales accesibles mediante pkpantallas

Estas variables están accesibles tanto desde los programas, desde los procedimientos almacenados en la

base de datos, vistas, etc. Su utilidad es múltiple, como hacer vistas parametrizadas por el usuario validado,

hacer sqls con autorización de permisos en el generador de informes, etc

• Pkpantallas.usuario_validado: Devuelve el usuario que ha iniciado sesión, es decir, el

equivalente a la variable :global.usuario.

• Pkpantallas.superusuario: Si el usuario validado es superusuario lo devuelve, si no es

superusuario devuelve EDISA, es el equivalente a la variable :global.superusuario.

• Pkpantallas.perfil_usuario_validado: Devuelve el perfil principal del usuario validado, es el

equivalente a la variable :global.perfil.

• Pkpantallas.programa_validado: Devuelve el nombre del programa que se está ejecutando, es

equivalente a la variable :parameter.id_programa.

• Pkpantallas.idioma_usuario_validado: Devuelve el idioma del usuario que está validado, es

equivalente a la variable :global.idioma_usuario.

• Pkpantallas.id_personalizacion: Devuelve el identificador de la personalización de

PROGRAMAS_ERP_PRES que se está ejecutando. No hay equivalente en variable global.

• Pkpantallas.get_valor_ultima_ejecucion_lov: Ver sección código PL/SQL.

• Pkpantallas.sector_empresa(<empresa>): Devuelve el sector de la empresa que se pasa por

parámetro, es necesario pasar la empresa ya que se puede usar tanto en programas de nueva como

de vieja estética, internamente la consulta a la base de datos solo la hace la primera vez, luego ya

deja cargado el valor. No tiene equivalente en variable global.

• Pkpantallas.get_usuario_so: Usuario del sistema operativo que está ejecutando Libra.

• Pkpantallas.get_equipo_so: Nombre del equipo que esta ejecutando Libra.

Definibles dinámicamente

Se pueden definir variables de forma dinámica, desde el fuente de un programa o desde código pl-sql del

mantenimiento de programas, para ello tenemos las siguientes funciones y procedimientos:

• Pkpantallas.set_variable_env(<variable>, <valor>): Asignamos en la variable '<variable>' el

valor de '<valor>'. Ejemplo:

PKPANTALLAS.SET_VARIABLE_ENV('PRUEBA','VALOR_PARA_PRUEBA');

• Pkpantallas.get_variable_env_varchar2(<variable>): Devuelve el valor de la variable

'<variable>', siempre y cuando se le hubiese asignado un VARCHAR2, si se le pasó un DATE o

un NUMBER hará la conversión a VARCHAR2. Ejemplo:

PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('PRUEBA'), devolvería

'VALOR_PARA_PRUEBA' si ejecutamos antes el ejemplo del punto anterior.

• Pkpantallas.get_variable_env_number(<variable>): Devuelve el valor de la variable

'<variable>', siempre y cuando se le hubiese asignado un NUMBER.

• Pkpantallas.get_variable_env_date(<variable>): Devuelve el valor de la variable '<variable>',

siempre y cuando se le hubiese asignado un DATE.

• Pkpantallas.inicializar_variables_env: Borra todas las variables definidas.

147

Variables de inicio de libra.env

• FORMS_PATH: Camino que usa libra para buscar los programas y las librerías. Se especificarán

los directorios separados por dos puntos ':' y se buscaran los programas comenzando por el primer

directorio especificado, sino se encuentran por el siguiente, ...

• REPORTS_PATH: Únicamente se utiliza para localizar los informes de Oracle Reports con

traducciones a otros idiomas. En el caso de no ser necesarios informes en idiomas esta variable no

es necesaria, ya que el propio servidor de Reports tiene las rutas a los informes de forma

independiente a Oracle Forms.

• PATH: Camino en los que se buscan los ejecutables del sistema operativo para ejecuciones en el

servidor de aplicaciones.

• NLS_LANG: Idioma:

• NLS_DATE_FORMAT: Formato de la fecha.

• NLS_NUMERIC_CHARACTERS: Si se especifica ,. se supone que , es el separador de decimales

y . el de millares.

• NLS_SORT: Tipo de ordenación que aplicará Oracle, normalmente se especificará BINARY.

• DIRECTORIO_SALIDA: Directorio que usan múltiples programas de Libra para generar salidas

a archivos. Su uso está considera obsoleto.

• LIBRA_ID: Puesto desde el que se ejecuta Libra, debe de existir en la tabla de puestos para que

funcionen correctamente las listas de valores de impresoras.

• IDIOMA_USUARIO: Idioma en que presentará la pantalla de login.

• REG_FALLOS_TRADUCCION: Si se pone S se activa por defecto la opción de menú de registrar

fallos de traducción.

• REP2EXCEL_PARAM: Parámetros con los que se llamará a rep2excel para convertir el archivo

html en xls.

• PROGRAMA_INICIO: Nombre del fmx que se ejecutará según se valide el usuario, si el usuario

tiene especificado un programa de inicio prevalecerá sobre el que se especifique en esta variable.

• PROGRAMA_FIN: Programa que se ejecutará al salir de Libra, si el usuario tiene especificado

un programa de fin prevalecerá sobre el que se especifica en esta variable.

• DIRECTORIO_SALIDA_REP_FILE: Directorio que se propondrá por defecto cuando se

seleccione el envío de informes a fichero.

• DIRECTORIO_SALIDA_REP_FAX: Directorio que se propondrá por defecto cuando se

seleccione el envío de informes a fax.

• DIRECTORIO_SALIDA_REP_GESTDOC: Directorio que se propondrá por defecto cuando se

seleccione el envío de informes a gestor documental.

• DESACTIVAR_RF: Si se asigna el valor S, no hace falta tener compilado ni que exista nada

relacionado con la radiofrecuencia para que funcione el menú.

• COMANDO_REP2EXCEL: Indicar el comando completo para convertir un html en un xls, si no

se especifica nada se usa los valores por defectos de rep2excel. Del comando de sustituyen

<archivo_html> por el nombre del archivo con su ruta generado por el report, y <archivo_xls> lo

sustituirá por la ruta y nombre del archivo XLS que debe generar. Ejemplo:

COMANDO_REP2EXCEL=start http://your_server_name:7777/cgi-

bin/rep2excel.exe?baseidr=<archivo_html>

• REP2EXCEL_PARAM: Esta variable es incompatible con COMANDO_REP2EXCEL, si se

especifican ambas se usarán únicamente COMANDO_REP2EXCEL, siendo

REP2EXCEL_PARAM ignorada. En esta variable podremos añadir parámetros al comando

rep2excel.

• REP2EXCEL_DESACTIVAR_BORRADO: Para generar excel, rep2exel se basa en el archivo

html generado por reports, si a esta variable se asigna el valor S el archivo html no se borra una

vez hecha la llamada al rep2excel, además al archivo html y xls se añade el nombre del usuario y

la fecha para evitar que dos usuarios concurrentes generen el mismo archivo en un momento dado.

148

• PAGESIZE_EXCEL: Se puede usar para indicar a reports el tamaño de la página cuando se envía

a excel, es útil para evitar el paginado en el informe, por ejemplo: PAGESIZE_EXCEL=39 X

1300

• DIRECTORIO_LOG: Directorio en donde se guardarán los archivos de traza.

• COMANDO_FAX: Comando de sistema operativo que se ejecutará cuando el usuario selecciona

fax y reports ya ha generado el archivo se pueden usar las siguientes variables:

o <fax>: Se sustituye por el número de fax al que se va a enviar el informe.

o <archivo_pdf>: Nombre del archivo y ruta del fichero .pdf generado.

o <archivo_ps>: Nombre del archivo y ruta del fichero .ps generado.

• COMANDO_PS2PS2: Se usa cuando se especificó el COMANDO_FAX, el comando que se

parametriza en esta variable se usa para convertir el archivo .pdf generado por forms a .ps

necesario en muchos programas de envío por fax. Se pueden usar las siguientes variables:

o <archivo_pdf>: Nombre del archivo y ruta del fichero .pdf generado.

o <archivo_ps>: Nombre del archivo y ruta del fichero .ps que se va a generar.

• CENTRAR_LOV: Si se asigna el valor N las listas de valores no se centran en pantalla y se

muestran en la posición 0,0.

• PROGRAMA_DESTINO_MENSAJE: Cada vez que se muestre un mensaje, en vez de hacerlo

por el método estándar de forms se llama al programa que se indica en esta variable.

• TIPO_PUESTO: Posibles valores:

o N: Normal, es el valor por defecto si no se especifica nada.

o T: Optimizado para el funcionamiento en terminal server con tamaño de menú normal.

o P: Optimizado para el funcionamiento en terminal server con tamaño de ventana

optimizado para pocket.

• DESACTIVAR_CIERRE_CON_ESC: Si se asigna el valor N se fuerza a que con la tecla ESC se

salga de Libra cuando se está en el menú y no hay ningún programa abierto.

• VENTANA: Indica como se quiere que abra la ventana de Libra:

o MAX: Maximizada, este el el valor por defecto en caso de no indicar esta variable.

o MIN: Minimizada.

o NOR: Normal, en este caso se puede indicar el tamaño en pulgadas que se quiere que

tenga la ventana y la posición X, Y en donde debe de abrirse, para ello hay que

especificar: VENTANA=NOR:X:Y:ANCHO:ALTO, por ejemplo:

VENTANA=NOR:0:0:8,3:5,4 (Se abrirá Libra en la posicion X = 0 e Y = 0, ANCHO =

8,3 y ALTO = 5,4)

• EXTENSIONES_VISUALIZACION: Lista de extensiones de archivo separadas por comas que

se pueden visualizar en el equipo en donde se está ejecutando Libra. Si en parámetros generales

de menú está cubierto esta variable es ignorada.

• ACTIVA_TRAZA: Si se indica el valor S, se activa la traza desde un principio, esto es

especialmente útil para trazar la pantalla de Login.

Desarrollo de aplicaciones para pocket - Terminal Server

Configuración del entorno.

El principal problema de la ejecución en Terminal Server o Citrix en un dispositivo Pocket es el tamaño de

la pantalla física y que suele haber una pantalla lógica más grande y para recorrerla hay que usar las barras

de scroll, algo muy engorroso para los usuarios.

Al ser la pantalla lógica más grande que la física, todo lo que salga centrado posiblemente se vea en una

zona de la pantalla que no se está visualizando en ese momento y para verlo el usuario tendrá que hacer

scroll.

El objetivo que hay que plantearse, aparte de un menú más pequeño, que todo salga en la posición 0,0 de

la pantalla para que lo pueda visualizar bien el usuario. Para ello se debe modificar en el mantenimiento de

puestos desplegable “Tipo Puesto” e indicar “Pocket”.

149

Desarrollo o adaptación de un programa a pantalla pequeña.

El desarrollo hay que tener en cuenta los siguientes puntos:

• Cambiar en las propiedades del formulario el “menu6” por “menu6_pocket” o uno adaptado a las

necesidades con las opciones que se quieran dar por menú a los usuarios.

• Se ajustará el tamaño de la ventana “VENTANA” y del lienzo “CANVAS_BASE” al tamaño de

la pantalla de los pocket.

• Añadir a los programas el grupo de objetos LISTA_VALORES_GRUPO y cuando se asigna en

el mantenimiento de programas la lista de valores en la pestaña “Campo” en “Lista de valores por

grupos” seleccionar Si – 9 registros o Si – 5 registros dependiendo del tamaño de la pantalla. Se

pueden usar listas de valores normales, pero las de grupo son mucho más cómodas para usar con

el lápiz del pocket.

• En las listas de valores activamos las listas de valores por grupo. Seguramente se tengan que

personalizar las listas de valores para optimizar el tamaño de las columnas.

150

Localización de descripciones de tablas de parametrización

De la traducción de las pantallas al idioma del usuario se encarga totalmente el entorno de Libra, pero para

traducir tablas específicas de otros procesos simplemente proporciona ayuda para hacer dicha tarea.

Para ello se dispone del plug-in “u_plintdesidi” que se puede aplicar a cualquier programa para guardar las

traducciones por idioma.

Por ejemplo, para las formas de cobro / pago se añadiría el plug-in de la siguiente forma:

Particularidades de la configuración del plug-in:

• Permitir grabar en programa llamado: Se desactiva esta check, ya que en el plug-in donde se

gestionan las traducciones el usuario no puede grabar, para grabar los datos introducidos lo hará

desde el programa llamador, en este caso, desde el mantenimiento de formas de cobro pago.

• Botonera Horizontal: Este plug-in se define en la botonera horizontal para tenerlo bien

diferenciado del resto de plug-ins.

• Icono: Ya propone “world”, es recomendable dejar este para que en todos los procesos tenga el

mismo icono.

• Modo Menú: Al ser un programa con una ventana flotante, para conseguir que una mejor

integración con el programa llamador le indicamos “No Reemplazar”.

• Parámetros:

o P_CODIGO: Se indica el campo en el que se encuentra el código del registro del que se

quiere traducir la descripción.

o P_CODIGO_EMPRESA: En este caso al ser una tabla que los registros son comunes a

todas las empresas de Libra se le pasa '.', en el caso de ser una tabla que la codificación

fuese independiente de por empresa se pasaría GLOBAL.CODIGO_EMPRESA

o P_NOMBRE_TABLA: Nombre de la tabla de la que se quiere gestionar las

traducciones, en este caso es FORMAS_COBRO_PAGO, por eso se pasa

'FORMAS_COBRO_PAGO'.

151

El resultado será el siguiente:

Para gestionar el borrado, de forma de que al borrar en la tabla padre borre las traducciones asociadas, hay

que meter en el PL/SQL de “Post Borrado” lo siguiente:

PKPANTALLAS.BORRAR_TRADUCCIONES_TABLA('.', :b1.codigo, 'FORMAS_COBRO_PAGO');

El primer parámetro recibe el código de la empresa, al ser una tabla que no se define por empresa se le pasa

'.', en caso de ser una tabla que se definiese por empresa se pasaría :global.codigo_empresa;

Para recuperar la traducción se llamará la función: PKPANTALLAS.BUSCAR_TRADUCCION_TABLA

('<empresa>', '<código>', '<tabla>', '<código de idioma>', '<descripción sin traducir>', '<tipo');

• <empresa>: Si los registros de la tabla no van por empresa se pasará '.' (punto), en otro caso el

código de la empresa.

• <código>: Código del registro del que se busca la traducción.

• <tabla>: Tabla donde está almacenada la descripción a traducir.

• <código de idioma>: Código de idioma definido en la tabla IDIOMAS, en el que se quiere obtener

la descripción en idioma.

• <descripción sin traducir>: Texto de la descripción sin traducir, se devolverá en el caso de que no

se encuentre una traducción específica para el idioma indicado en <código de idioma>.

• <tipo>: 'R' para obtener la traducción reducida y 'D' para la completa.

Ejemplo:

pkpantallas.buscar_traduccion_tabla('.', 'EFE', 'FORMAS_COBRO_PAGO', '02', 'EFECTIVO', 'D')

152

Consulta de datos jerárquicos

Mediante el programa U_ARBOL se pueden realizar consultas jerárquicas de tipo árbol. Por cada consulta

se debe de generar una nueva personalización del programa U_ARBOL.

El origen de los datos tiene que estar normalizado, para ello se puede usar una vista con una estructura fija:

Esa vista se indicar en el código pl/sql de inicialización en la personalización a nivel de programa:

Otra forma es modificar la consulta del bloque B2, en la personalización y meter ahí la SELECT

equivalente.

En la personalización se pueden añadir hasta 10 filtros alfanuméricos, 10 filtros numéricos, 2 de fecha y

dos filtros códigos fijos (numérico o carácter según si la tabla que estemos utilizando el código es numérico

o carácter).

Estos filtros se encuentran en el bloque B1 y por defecto están ocultos, en la personalización se cambiará

la check “Ocultar”, la etiqueta y se añadirá si es necesario alguna lista de valores.

Los datos adicionales que se quieran visualizar, hay que personalizarlos en los campos del bloque B2,

cambiando la check “Ocultar” y la etiqueta.

En el bloque B2 se pueden añadir plug-ins para ampliar la información mostrada, según la rama del árbol

seleccionada.

El programa admite parámetro el parámetro codigoA (código carácter) o codigoN (código numérico) para

ser llamado como plugin y que salga el bloque del árbol directamente filtrado por el código.

153

Gráficos integrados en Programas

Esta funcionalidad sólo funcionará cuando el programa se ejecute en Forms 12c.

En el programa que utilice esta funcionalidad hay que incluir la librería: pklibgraf.pll, y en los bloques hay

que añadir campos con la clase de propiedad CLASE_GRAFICO

Para representar el gráfico es necesario partir de una SQL que obtenga los datos a mostrar. La sql deberá

de devolver los registros lo más agrupados posibles, es decir, si queremos las ventas por clientes, será:

SELECT cliente, SUM(importe) importe FROM tabla GROUP BY cliente. En vez de SELECT cliente,

importe FROM tabla.

Inicializar Gráfico.

El primer paso para utilizar un campo de gráfico es inicializarlo. Esta inicialización se hará llamando a la

función: pkgraficos.inicializar('BLOQUE.CAMPO_GRAFICO'). Esta función devolverá un identificador

numérico que deberá ser almacenado en una variable, ya que ese valor identificará el gráfico para poder

aplicarle propiedades. Ejemplo: :parameter.id_grafico := pkgraficos.inicializar('B1.GRAFICO');

Propiedades a nivel Gráfico.

Para modificar propiedades a nivel de gráfico se utilizará el procedimiento

pkgraficos.set_propiedad(<id_grafico>, <propiedad>, <valor>).

• <id_grafico>: Identificador del gráfico obtenido por pkgraficos.inicializar.

• <propiedad>: Código de la propiedad a modificar del gráfico.

• DEVOLVER_VALOR_SELECCIONADO: Cuando el usuario hace click sobre algún

elemento del gráfico, podemos indicar que es lo que queremos que nos devuelva (Valores

posibles para <valor>):

o 'ALL': Todo

o 'ROWLABEL': Etiqueta de fila.

o 'COLUMNLABEL': Etiqueta de columna.

o 'CELLVALUE': Valor representado.

o 'PRIMARY_KEY': Código asignado.

REGISTRAR_TRIGGER: Cuando interesa recoger el valor seleccionado por el usuario hay que registrar

un TRIGGER que deberá existir en el programa (trigger de usuario), cuando el usuario pulsa sobre algún

componente del gráfico se disparará ese trigger, en el cual se deberá recoger el valor con la función

pkgraficos.get_valor_devuelto(). En <valor> de la propiedad se indicará el nombre del trigger. El valor

devuelve depende de lo que se indique en DEVOLVER_VALOR_SELECCIONADO. Si no se ha indicado

la propiedad DEVOLVER_VALOR_SELECCIONADO el registro del trigger será ignorado. También hay

que añadir en el programa en el disparador WHEN-CUSTOM-ITEM-EVENT la siguiente línea:

PKGRAFICOS.WHEN_CUSTOM_ITEM_EVENT;

• TIPO_GRAFICO: Tipo de gráfico a representar, en <valor> se puede indicar uno de los

siguientes tipos: HORIZONTAL_BAR, HORIZONTAL_BAR_2Y, VERTICAL_BAR, VERTICAL_BAR_2Y,

VERTICAL_STACKED_BAR, HORIZONTAL_STACKED_BAR, VERTICAL_PERCENT_BAR, HORIZONTAL_PERCENT_BAR,

VERTICAL_LINE_GRAPH, HORIZONTAL_LINE_GRAPH, RING_BAR, VERTICAL_STACKED_LINE_GRAPH,

HORIZONTAL_STACKED_LINE_GRAPH, VERTICAL_AREA_GRAPH, VERTICAL_PERCENT_AREA_GRAPH,

VERTICAL_STACKED_AREA_GRAPH, PIE_GRAPH, PIE_BAR_GRAPH, MULTI_PIE_GRAPH' COMBINATION_GRAPH,

3D_BAR_GRAPH, 3D_AREA_GRAPH

• TEXTO_TITULO: Título que se mostrará en la cabecera del gráfico. En <valor> se indicará

el texto.

• TOOLTIPS: Se indicará el comportamiento deseado cuando el usuario pase con el ratón

sobre alguna parte del gráfico. En <valor> se pueden indicar los siguientes valores:

o 'NONE': No se muestra nada.

o 'ALL': Mostrará toda la información disponible.

o 'LABELS': Muestra las etiquetas de la columna.

o 'VALUES': Se muestra el valor del dato representado.

154

• SHOW_GRID: Permite activar o desactivar la rejilla de fondo del gráfico. Valores posibles:

TRUE, FALSE

• MOSTRAR_COLUMNAS_EN_FILAS: Permite permutar las filas por columnas. Valores

posibles: TRUE, FALSE

• TRAZA: Activa la salida de información de traza para el gráfico. Valores posibles: TRUE,

FALSE

Añadir SQL a Gráficos

Un gráfico por lo general contendrá una única SQL. La SQL será la que determine los valores a representar

y debe tener las siguientes características:

• Tantos campos numéricos como valores a representar en el gráfico.

• Un campo para obtener el valor del título de la serie a representar.

Para añadir una SQL al gráfico se utilizará la función: pkgraficos.add_sql(<id_grafico>, <sql>'); Esta

función devolverá un identificador numérico que será necesario guardar en una variable para luego asignar

propiedades a la SQL.

Propiedades de SQL.

Para modificar propiedades a nivel de SQL se utilizará el procedimiento

pkgraficos.set_propiedad_sql(<id_grafico>, <id_sql>, <propiedad>, <valor>).

• <id_grafico>: Identificador del gráfico obtenido al ser inicializado por pkgraficos.inicializar.

• <id_sql>: Identificador de la sql, obtenido en pkgraficos.add_sql.

• <propiedad>: Código de la propiedad a modificar de la sql.

o COLUMNA_TITULO: Identifica la columna que contendrá el título de las series a

representar. En <valor> se indicará el número de columna de la SQL que contiene este

dato.

o COLUMNA_PRIMARY_KEY: Esta propiedad es opcional, y se utiliza cuando se

registra un trigger en el gráfico y se indica que se debe de devolver la clave primaria del

valor seleccionado por el usuario. En <valor> se indicará el número de columna de la

SQL que contiene la clave primaria.

o MASCARA_FORMATO_COLUMNA_TITULO: Si en COLUMNA_TITULO se

indicó una columna de tipo DATE, se puede modificar la máscara de formato. En <valor>

se indicará una máscara de formato válida.

Mostrar el gráfico

Una vez asignadas las propiedades necesarias para representar el gráfico, hay que invocar al procedimiento:

pkgraficos.mostrar_grafico(<id_grafico>);

155

