6N LIBRA

EVENT DRIVEN ENTERPRISE

N

DESARROLLO
LIBRA 6.5.0

N}\

Fecha: 12/01/2026

b,

\

www.edisa.com

@M EDISA

Introduccion 6
Grupo de Objetos 6
Nombre de los bloques 7
Lienzo base 7
Listados 7
Mensajes 7
Informacion detallada 8
Crear Mensajes 9
Atributos Visuales 10
Clases de propiedad 11
Campos de tipo elemento de lista 12
Ejecucion de programas por codigo 12
Campos de visualizacion de descripciones 13
Listas de Valores 16
Limitaciones 16
Pasos para crear una lista de valores 16
Asociar programa a una Lista de Valores 19
Segunda Clausula Where para una lista de valores. 20
Clausulas Where dinamicas. 22
Cddigo PL/SQL de Pre-Validacion 22
Cddigo PL/SQL de Validacion 23
Colorear determinados registros en Listas de Valores 23
Filtros en listas de valores 24
Plug-ins en listas de valores 26
Mejoras de busquedas contextuales 27
Envio del contenido de una lista de valores a Hoja de Calculo. 28
Posicionado de una lista de valores en Pantalla 28
Consulta para obtener la descripcion 28
Listas de valores con valores estaticos 28
Listas de Valores por grupos. 29
Listas de valores en modo Entrada Consulta 29
Funciones para gestion de la Lista de Valores 31
Indicar el botén de llamada a la lista de valores 31
Disparadores 31
WHEN_NEW_ITEM_INSTANCE 32
WHEN-VALIDATE-ITEM 32
Listas de valores de Multiseleccion 33
Procedimiento para activar una lista de multiseleccion. 34
Funciones para procesar los registros seleccionados por el usuario. 34
Ejemplo de lista de valores de multiseleccidn. 35
Programa para mantener programas !!!!1! 36
Operaciones que se pueden realizar a nivel de programa 36
Operaciones que se pueden realizar a nivel de bloque 39
Operaciones que se pueden realizar a nivel de campo 43
Control de visualizacién de campo segun el sector del grupo empresarial 50

@M EDISA

Pestafias

Informes

Configuracion de los informes

Generacién / Impresion Multiples

Control de visualizacién de informe segun sector del grupo empresarial

Ventanas

Plug-in

Devolver valor desde el plug-in al programa llamador

Permisos

Autorizar / Desautorizar plug-in

Plug-ins globales a un programa

Crear plug-ins globales a todos los programas de Libra.

Control de visualizacién del plug-in segln sector del grupo empresarial

Duplicado automatico de tablas detalle al duplicar registro de bloque

Documentacion de modificaciones en programas

Personalizar programas

Modificar por cédigo las propiedades cargadas del mantenimiento de programas.

DISPSTD.SET_PROPIEDAD

DISPSTD.GET_PROPIEDAD

Cédigo PL/SQL

Generacidn de hojas de célculo desde cédigos PL/SQL

Ejecutar operaciones de Forms desde PL/SQL de Libra.

Ejemplo de activacién/desactivacion de plug-in desde PL/SQL

Generar archivos de texto en ordenador cliente o servidor de aplicaciones desde PL/SQL
Generar archivos XML en ordenador cliente o servidor de aplicaciones desde cédigo pl/sql. _

Leer propiedades de objetos del programa desde cddigo PL/SQL.

Gestionar los registros seleccionados por el usuario.

Busqueda contextual

Habilitar y Deshabilitar opciones de menu (Paquete FMENU)

Notas Importantes sobre el Menu y la Botonera

Generar Logs de traza.

Logs de incidencias ocurridas en la base de datos

Disparadores estandar

Particularidades

Personalizacidn Borrado y grabacién.

Impresion.

Impresién por FAX.

Impresién multidestino.

Crear un formulario desde cero

Colocar campos en la pantalla.

Disparadores personalizados

Modificacién de propiedades de campos (FITEM)

Campos de primary key de un bloque.

Campos Desde / Hasta

Mascaras

Funciones Varias

51
52
53
54
56
57
58
63
63
63
63
63
64
64
65

65

66
66
66

72
78
78
80
81
81
82
82

83
84

85

86
87

88
88
88

89
89
89

20
92
92
92
93
93

93
94

@M EDISA

Control de Errores

95

Nomenclatura de SQLS

99

Notificacion de errores en procesos desatendidos

Configuracion de Notificaciones

Lista de Operaciones a realizar para realizar la notificacion

Generacion de hojas de cdlculo

Pasos para la generacion de una hoja de célculo

Propiedades

Archivo de hoja de calculo

Fuentes y Estilos

Hoja.

Columna de hoja

sQL

Grupos de titulos de columnas

Columna de la SQL

A nivel de formula.

A nivel de columna de formula.

Variables disponibles en formulas.

Férmulas matriciales.

Asignar valores sin ser obtenidos de una SQL a determinadas celdas.

Combinar celdas

Constantes

Colores

Negrita

Subrayado

Borde

Alineacién Horizontal

Alineacién Vertical

Preparar en base de datos y ejecutar en Forms

Hoja de Calculo Simple

Lectura de hojas de cdlculo

Modificacion de hojas de calculo

Archivo a modificar en el servidor de Forms o en el equipo del usuario
Archivo de plantilla almacenado en la base de datos

Gestion de correos electronicos

Envio

Inicializar

Opcionalmente cambiar el remitente del mensaje

Incorporar el asunto del mensaje

Incorporar el cuerpo del mensaje

Indicar los destinatarios

Adjuntar archivos

Procesar envio.

Funciones de control

Descarga

Gestion de archivos XML.

Carga de archivo

Inicializacion

Configuracion de Nodo

101
101
102

103
103
104
104
106
107
108
108
109
109
111
111
112
112
113
115
116
116
117
117
117
117
117
118
118

119

120
120
121

121
121
122
122
122
122
122
123
123
124
124

125
125
125
125

@M EDISA

Configuracion de Items del nodo 126
Ejecutar el proceso de lectura 127
Generacién de archivos XML 127
Inicializacion 127
Incluir nodos al documento 128
Incluir campos a un nodo 128
Incluir atributos a un nodo. 128
Ejecutar el proceso de generacion 128
Recursos HTML en programas de Forms. 130
Programa Archivos de Recursos [U_RESOURCES] 130
PKLIBRSC.PLL 130
PKLIBWEBBROWSER.PLL 131
Manual de uso en programa 132
Editor Visual HTML 134
Inicializar 134
Propiedades. 134
Incluir etiquetas fijas 135
Incluir imagenes 135
Ejecutar y recuperar los datos introducidos por el usuario. 135
Gestion de Archivos 136
Borrar un archivo en la base de datos 136
Obtener el listado de archivos de un directorio de la BD. 137
Comprimir un archivo en la base de datos 137
Comprimir varios archivos en un unico ZIP en base de datos 137
Descomprimir un archivo en la base de datos 138
Impresién de archivos PDF 138
Cambiar codificacidn de archivos de texto 139
Consultar la codificacidn de un archivo de texto 139
Obtener lista de archivos de un directorio 139
En base de datos 139
En equipo del usuario o en el servidor de aplicaciones 140
Gestidn de fecha de ultima modificacién de un archivo 140
Obtener fecha de un archivo en base de datos 140
Obtener fecha de un archivo en servidor de aplicaciones o en el equipo del usuario 140
Cambiar la fecha de dltima modificacidn de un archivo en servidor de aplicaciones o equipo del
usuario. 141
Parser de textos para reemplazar etiquetas 141
Tipos de etiquetas 142
Inicializar 143
Propiedades generales del proceso 143
Variables 144
Propiedades de tabla 144
Propiedades de columna 144
Obtener el resultado 144
Variables y pardmetros globales 145
Variables globales 145
Parametros disponibles para personalizaciones 146
Variables globales accesibles mediante pkpantallas 146
Definibles dindmicamente 146

Variables de inicio de libra.env 147

@M EDISA

Desarrollo de aplicaciones para pocket - Terminal Server 148
Configuracion del entorno. 148
Desarrollo o adaptacion de un programa a pantalla pequeiia. 149

Localizacién de descripciones de tablas de parametrizacion 150

Consulta de datos jerarquicos 152

Graficos integrados en Programas 153
Inicializar Grafico. 153
Propiedades a nivel Grafico. 153
Afadir SQL a Gréficos 154
Propiedades de SQL. 154
Mostrar el grafico 154

Introduccion

Los programas de Libra estan orientados hacia el uso de pestaiias, incluso en programas muy sencillos se
usa por lo menos una pestafia con el nombre del programa.

Grupo de Objetos

La principal ventaja de los grupos de objetos radica en que permite manipular con mas facilidad varios
componentes de un formulario como si se trataran de uno s6lo. También permite de forma facil reutilizar
componentes en varios formularios, pero la principal ventaja es que si se afiade un componente al grupo de
objetos todos los formularios que hayan derivado una subclase (no copiado) de ese grupo de objetos,
incluiran automaticamente dicho objeto componente cuando se vuelvan a compilar o a abrir en Forms.

Todos los componentes prefijados para ser usados en libra se almacenan en una libreria de objetos llamada
OBJETOSPANT.OLB.

Los componentes que incorpora la libreria de objetos son:

e FORMULARIO BASE: Incorpora todos los elementos basicos para desarrollar un programa.

e FORMULARIO BASICO: Igual que FORMULARIO_ BASE, pero sin ningin lienzo y ventana.
Recomendado en programas que funcionen como plug-in.

e EDICION PANTALLA: Incorpora los elementos necesarios para permitir hacer dinamico el
formulario.

e LISTA VALORES: Elementos para mostrar listas de valores.

e LISTA VALORES GRUPO: Elementos para listas de valores por grupos.

e LISTADO: Incorpora lo necesario para realizar la llamada a un informe.

e GRAFICO. Incorpora lo necesario para realizar la llamada a un grafico.

e CALENDARIO: Elementos para construir el calendario.

e CALCULADORA: Elementos para construir la calculadora. Es importante que todos los
programas contengan este grupo de objeto.

e INSERTAR IMAGEN: Obsoleto — NO USAR.

e FORMULARIO LIGHT: Obsoleto — NO USAR.

@M EDISA

e
NZE|XBE| % |

Caomponentes |

=/ FORMULARID_LIGHT =

=] CALCULADORA

=] LISTA_WALORES

=] EDICION_PANTALLA

=) FORMULARIO_BASE

= LISTADO

=) GRAFICO

=] CALENDARIC
-
Ll »

Para incorporarlos en el programa que se estd desarrollando simplemente abrimos la libreria de objetos y
arrastramos el componente a nuestro formulario y seleccionamos que deseamos incorporarlo como una
Subclase, esto es muy importante para que futuros cambios de funcionalidad o estética no requieran
modificar el programa y que se incorporen simplemente recompilando el programa.

Nombre de los bloques

Al arrancar el programa ira siempre al primer bloque navegable, por tanto, se puede usar cualquier nombre
para los bloques, por ejemplo, los nombres de las tablas o abreviaturas.

Lienzo base

El lienzo base se llama CANVAS TAB y tiene una pestafia llamada TABO. Para afiadir una nueva pestafia
es tan simple como situarse sobre TABO y pulsar afiadir.

Listados

Para poder usar listados desde un programa deberemos de cargar el componente LISTADOS de la libreria
de objetos “objetospant.olb”

Nota: No hace falta habilitar el boton de imprimir, ya que al inicializarse el programa se detecta si tiene un
bloque BREPORT y en ese caso lo activa automaticamente.

Es recomendable, en la medida que sea posible, indicar el informe a ejecutar en el mantenimiento de
programas en la pestafia “Informes”, en vez de ponerlo de forma fija en el fuente del programa.

Mensajes

Todos los mensajes tienen que ser traducibles, para ello, para mostrar un mensaje al usuario siempre
usaremos el paquete MSG de PKLIBPNT.PLL que contiene las siguientes funciones y procedimientos:

e MENSAJE: Muestra el mensaje y para la ejecucion del codigo.

e ALERTA: Muestra el mensaje, pero no para la ejecucion del codigo. Esta funcion devuelve el
codigo del boton que pulso el usuario.

e MENSAJE_PERSONAL. Igual que MENSAIJE, pero le podemos afiadir un texto personalizado.
Trataremos de evitar su uso, ya que el texto personalizado no se puede traducir.

e ALERTA_PERSONAL: Igual que ALERTA, pero le podemos afiadir un texto personalizado. Al
igual que MENSAJE PERSONAL, trataremos de evitar su uso, ya que el texto personalizado no
se puede traducir.

e REPLACE_TEXTO: Se pasan como parametros dos cadenas. El cometido de esta funcion es
hacer que en el proximo mensaje o alerta que salte, sustituir la cadenal por la cadena2, de esta
forma si creamos el mensaje “Se han generado <> facturas” y hacemos la llamada
MSG.REPLACE TEXTO('<>', 10), al llamar a MSG.ALERTA el mensaje que se muestra al
usuario es: “Se han generado 10 facturas”.

@M EDISA

Cuando usamos la funcion ALERTA o ALERTA PERSONAL para comprobar cual de los botones ha
pulsado el usuario se comparara con las siguientes constantes, ALERT BUTTONI1, ALERT BUTTON?2,
ALERT BUTTONS3 para controlar si el usuario ha pulsado el boton 1, 2 ¢ 3 respectivamente.

IMPORTANTE: Las llamadas a EJ&’;&EIO:

MSG.ALERTA y MSG.ALERTA PERSONAL v_boton_pulsado NUMBER;
ejeCUtan un RAISE FOI‘l’n_TI‘igger_Fallure, por BEsiEOtOn_pulsado = MSG.ALERTA ('ALERT', 'SALIR');
lo que si son llamados en un bloque PL/SQL que

sz r 1 = 1
captura una excepcion WHEN OTHERS hara | *F 7-Doronpulsade = ALERE BULIONL wHEN
a pulsado el botén 1

que salte al codigo que maneja esa excepcion. ELSIF v_boton_pulsado = ALERT_BUTTON2 THEN
-- Ha pulsado el botdn 2
ELSIF v_boton_pulsado = ALERT_BUTTON3 THEN
-- Ha pulsado el botdédn 3
END IF;
END;

Informacién detallada

Cuando se muestra un mensaje con 1 boton, puede recoger informacion detallada que se hubiese puesto en
cola desde procedimientos almacenados en base de datos o en programas de Forms, de forma que, en el
caso de haber informacion detallada en la cola, se afiade un nuevo boton “Detalle” para que el usuario pueda
visualizarla.

Se puede poner en la cola de ampliacion codigos de mensaje definidos en la tabla MENSAIJES, esta es la
opcion recomendada, ya que al estar codificado en MENSAIJES se traduce al idioma del usuario:

PKPANTALLAS.TRAZA (<tipo mensaje>, <codigo_mensaje>, <texto adicional del mensaje', 'MSG');

Si el mensaje tiene parte variables, se pueden reemplazar ejecutando
PKPANTALLAS.SET MSG_REPLACE TEXTO (cadena a reemplazar, valor a reemplazar) antes de llamar a
PKPANTALLAS . TRAZA.

También se puede poner un texto fijo, pero no se intentara traducir: PKPANTALLAS.TRAZA (NULL, NULL,
<texto fijo>, 'MSG');

Ejemplo:

CREATE OR REPLACE FUNCTION test mensaje RETURN VARCHAR2 IS
v_articulo articulos.codigo articulo%TYPE := 'ARTPRUEBA';

BEGIN
pkpantallas.set msg_replace_texto('<art>', v_articulo);
pkpantallas.traza('TEST', 'NO_STOCK', NULL, 'MSG');
pkpantallas.traza('TEST', 'PRUEBA', NULL, 'MSG');
pkpantallas.traza (NULL, NULL, 'Mensaje no traducible, tratar de evitar', 'MSG');
RETURN ('GEN') ;

END;

/

El programa llama a esa funcion:

DECLARE

v_resultado VARCHARZ (30) ;
BEGIN

v_resultado := test_mensaje();

IF v_resultado != 'OK' THEN
MSG.MENSAJE ('PROCE', 'GENERAL');
END IF;
END;

[Detalle de Wensaje
Detalle de Mensaje

Mensaje

No se puede realizar el proceso.

£ articulo ARTPRUEBA no tiene stock sufidente para realizar 3 operadicn. a

& Mo se puede realizar el procese. | | ESm S s o satise, sot de s

N

Detalle al

@M EDISA

Crear Mensajes

Para crear los mensajes se hard desde el programa “MENSAJ”.

Archivo Opcicnes Edicion Desplazamiento Consulta Ventana Ayuda

14« 4« » »l il + & Qs B® AX L
RN Mensajes _0x
Mensajes
= 04/08/2022 11:36:34 1
T Codigo Descripcion
ﬁi EEIl HENSAIES A NIVEL DE CAMPO O ITEM AC_VARTI Existen varios articulos con estas caracteristicas. -
€ CAMPO MENSAJES A NIVEL DE CAMPO O ITEM AFR_ANUL No es pasible anular la linea por estar vinculada a un pedido de ventas
CAMPO MENSAJES A NIVEL DE CAMPO O ITEM AF_DESV La linea estd vinculada a una de ventas ¢Desea romper el vinculo?
CAMPO MENSAJES A NIVEL DE CAMPO O TTEM AF_DESVT i hubiera vinculacion con ventas ¢ Desea romper el vinculo?
B¥ CaMPO MENSAJES A NIVEL DE CAMPO O ITEM AGUSUCLT No hay coincidencias con el agente del diente y del usuario. No se cargard el agente del usuario
CAMPO MENSAJES A NIVEL DE CAMPO O TTEM ALERT
CAMPO MENSAJES A NIVEL DE CAMPO O ITEM APERNOAU No es usuario Autorizador para el tipo de Apertura.
CAMPO MENSAJES A NIVEL DE CAMPO O ITEM APLICAR Se aplicarén los cambios.éDesea continuar?
CAMPO MENSAJES A NIVEL DE CAMPO O TTEM ARBOL Debe Selectionar Cdigo en el Arbol Jerdrquico.
CAMPO MENSAJES A NIVEL DE CAMPO O TTEM ARTFAEST Debe indicar el cddigo de anticulo 0 el niimero de tabla y su cddigo Familiafestadistico.
CAMPO MENSAJES A NIVEL DE CAMPO O TTEM ASIE_SI No se puede marcar. Existen asientos con ese Diario.
CAMPO MENSAJES A NIVEL DE CAMPO O ITEM AUX
CAMPO MENSAJES A NIVEL DE CAMPO O ITEM A_POR Aplicar Porcentale al Precio?
CAMPO MENSAJES A NIVEL DE CAMPO O TTEM BANC_NUL El producto bancaria na puede ser nulo.
CAMPO MENSAJES A NIVEL DE CAMPO O ITEM BARR_DUP Codigo de Barras duplicado
CAMPO MENSAJES A NIVEL DE CAMPO O ITEM BORPVPE Borrado no permitido. El pvp por articulo selecdonado esta siendo utilizado. -
+ Boton Ok Etiqueta 1
Boton Cancelar Etiqueta 2 Mostrar en barra de estado
Grabar Logfile Etiqueta 3 Posicionar Boton Cancelar en ter lugar
Bloguear LOG en excepciones No v Confirmacién No v oK
Enmitir Sonido Seqin Usuaria ¥ Icono Cancelar
Codigo plfsal botdn 1 Cédigo plfsql botdn 2 Cédigo pifsql botdn 3 Cédigo plfsql previsualizacién
Idioma Desaripcion en Idioma Etiquetal FEliqueta2 Etiqueta3 Texto OK Texto Cancelar

e Grabar Logfile: Si se activa cada vez que se muestre el mensaje dejara un registro de auditoria
con que usuario y fecha se ha mostrado.

e Boton Ok: Muestra un botdn con la etiqueta "Aceptar" o con el texto indicado en "Etiqueta 1". Si
se desea un mensaje con tres botones, esta check debera dejarse desmarcada.

e Botén Cancelar: Muestra un boton con la etiqueta “Cancelar” o con el texto indicado en "Etiqueta
2". Si se desea un mensaje con tres botones, esta check debera dejarse desmarcada.

e Confirmacion: Si se activa, al usuario se le pedira que teclee el contenido de “Texto Confirmacion
OK” para aceptar el mensaje o “Texto Confirmacién Cancelar” para cancelar el mensaje, de esta
forma se evita que el usuario pase sin leer el mensaje. Valores posibles:

o No: Se visualiza el mensaje de forma normal, no es necesario que el usuario teclee nada.

o Si-Independiente de Mayusculas / Minusculas: El usuario tiene que teclear los textos
especificados en “Texto Confirmacion OK” o “Texto Confirmaciéon Cancelar”, pero
puede teclear en mayusculas o mintsculas, es indiferente.

o Si- Texto Exacto: El usuario tiene que teclear exactamente el texto del mensaje, con las
mismas mayusculas o mintsculas definidas en los textos de confirmacion.

e Emitir Sonido: Permite configurar a nivel de cada mensaje si se debe o no de emitir un sonido al
mostrarse el mensaje. Los valores posibles son:

o Si: Para el mensaje siempre se emitira un sonido, independientemente de la
parametrizacion del usuario.

o No: Nunca se va a emitir un sonido para ese mensaje, independientemente de la
parametrizacion del usuario.

o Segun Usuario: Dependera de lo que tenga configurado el usuario en (U_MCONFG -
Configurar usuario) o en (U_CONEM - Configurar grupo empresarial) en el campo
"Sonido al mostrar un mensaje".

e Icono: (Requiere Forms 14c¢). Permite indicar un icono que se mostrara en el recuadro del mensaje.
Para indicar un icono se dispone de lista de valores para poder seleccionar entre los iconos
disponibles en Libra.

e Posicionar Botén Cancelar en 1°" lugar: Si se activa, el boton “Cancelar” aparecera seleccionado
por defecto.

e Mostrar en barra de estado: Se puede activar para mensajes de poca importancia, de forma que
Uunicamente se muestra el mensaje en la barra inferior y el usuario puede seguir trabajando
normalmente sin tener que aceptar ningin mensaje.

https://libraupdate.libracloud.com/ayudas_erp/u_mconfg.html
https://libraupdate.libracloud.com/ayudas_erp/u_mconfg.html
https://libraupdate.libracloud.com/ayudas_erp/u_mconem.html

@M EDISA

e [Etiqueta 1, 2, 3: Con esos campos se puede alterar el texto que aparece el cualquiera de los 3
botones que puede mostrar un mensaje.

e Codigo pl/sql boton 1, 2, 3: Codigo PL/SQL que se ejecutara cuando el usuario pulse en algunos
de los botones del mensaje. Ver apartado “Codigo PL/SQL” para mas informacion.

o Cddigo pl/sql previsualizacion: Codigo PL/SQL que se ejecutard antes de lanzar el mensaje.
Tiene acceso de lectura y modificacion de la definicion del mensaje, asi como de los campos del
programa que lo lanza. Para el acceso a las variables del mensaje utilizaremos el
pkpantallas.set variable env'y pkpantallas.get variable env_xxx (segun corresponda) con estas

constantes: PKLIBPNT MSG_DESCRIPCION, PKLIBPNT MSG_BOTON OK,
PKLIBPNT MSG_BOTON_CANCEL, PKLIBPNT MSG_ETIQUETA_BOTON I,
PKLIBPNT MSG_ETIQUETA_BOTON 2, PKLIBPNT MSG_ETIQUETA_BOTON 3,
PKLIBPNT MSG_FORZAR CONFIRMA, PKLIBPNT MSG_VALOR_CONF OK,
PKLIBPNT MSG_VALOR _CONF _CANCEL, PKLIBPNT MSG_CODIGO_PL _SQOL BI,
PKLIBPNT MSG_CODIGO_PL_SQOL B2, PKLIBPNT MSG_CODIGO PL _SOL B3,

PKLIBPNT MSG_POS_BOTON _CANCEL, PKLIBPNT MSG_MOSTRAR_EN BARRA

Mensajes con 3 botones, si no se activa la check “Botén Ok” ni la check “Botdn Cancelar” se mostrara un
mensaje con 3 botones, el primer boton con la etiqueta “Si”, el segundo con la etiqueta “No” y el tercero
con la etiqueta “Cancelar”.

Texto confirmacion aleatorio (captcha): En el caso de activar forzar confirmacion, es posible especificar
que el texto sea el resultado de la ejecucion de DBMS RANDOM.string(opt,len), insertando en la seccion
de descripcion el codigo <random:x:n> donde “x” se corresponde con un valor valido para opt
(‘UL A’ X, ’P’) y “n” un entero entre 1 y 30 enviado a len.

Atributos Visuales

Es muy importante su uso para poder modificar la apariencia mediante parametrizacion. Normalmente las
clases de propiedad ya llevan asociado el atributo visual correspondiente. Tenemos definidos los siguientes
atributos visuales:

e V1. Atributo visual para el registro actual.

e V2: Atributo visual de campos editables numéricos o alfanuméricos.

e VDISPLAY: Atributo visual de campos no editables, normalmente descripciones.

e VQUERY: Atributo visual para modo entrada de consulta.

e VQUERY_DISPLAY: Atributo visual para modo entrada de consulta.

e VCHECK BOX: Atributo visual para campos de tipo check.

e VBOTON: Atributo visual para botones

e CAMPO_OBLIGATORIO_PROMPT: Atributo visual para la etiqueta de campos obligatorios.
e CAMPO_OPCIONAL_PROMPT: Atributo visual para la etiqueta de campos opcionales.
e VLIENZO: Atributo visual para lienzos.

e VENTANA: Atributo visual de la ventana.

e VLOGO: Para los logos

e VALERTA: Para las alertas

V1: Se especificara a nivel de bloque en la propiedad Grupo de Atributos Visuales del Registro Actual.

V2, VCHECK_BOX, BOTON: Se especificaran a nivel de item en la propiedad Grupo de Atributos
Visuales.

CAMPO_OBLIGATORIO_PROMPT, CAMPO_OPCION_PROMPT: Se especificardn a nivel de
item en la propiedad Grupo de Atributos Visuales del prompt.

VLIENZO: Se aplicara a los lienzos en la propiedad Grupo de Atributos Visuales.

Cada usuario tiene un perfil de configuracion de colores, fuentes, ..., para ello es muy importante usar las
clases de propiedades y atributos visuales definidas en el componente FORMULARIO_ BASE.

10

@M EDISA

Clases de propiedad

Las clases de propiedad son agrupaciones de propiedades con un valor prefijado para los componentes del
formulario (campos, lienzos, ventanas, ...). Este valor se asignard automaticamente al componente que se
le asigne la clase.

Para indicar a qué clase de propiedad pertenece un item se asignara en la propiedad Informacion de

Subclase.

« Informacian de Subclase |

Seleccionamos en el boton de radio Clase de Propiedad y le damos el Nombre de Clase de propiedad.

i Informacidn de subclase

" Objeto

Mombre de Clase de Propiedad:

Madulo: MANBASES j

fcepkar I Cancelar Ayuda

Una propiedad de un item que tenga asociada una clase de propiedad puede estar en alguno de los siguientes

estados:

Heredado de la clase de propiedad. +
Rota la herencia con la clase de propiedad, es decir se ha modificado la propiedad para este

item en concreto. *, para volver a realizar la herencia simplemente pulsamos i y el valor
de la propiedad vuelve al estado original establecido en la clase.
No heredado, pero no se ha modificado el valor de la propiedad, por tanto, el valor que tiene

es el estandar para el Campo de Forms. ° . Si se afiadiese esa propiedad a la clase de propiedad
asignada al item la heredaria de forma automatica.

No heredado, pero se ha modificado el valor estandar de la propiedad, “) para volver al valor

original por defecto de Forms pulsaremos i .

Es muy importante el uso de clases de propiedad y que rompamos la herencia sélo en los casos que sea
estrictamente necesarios, de esta forma cualquier cambio masivo se alguna propiedad se limitard a
modificar la clase en la libreria de objetos y recompilar todos los programas.

Las clases de propiedad se dividen en las siguientes:

11

Clases de propiedad para campos que se encuentren en un bloque multiregistro:

o CLASE DISPLAY ITEM GRID: Campos de visualizacion.

o CLASE ITEM_NUMBER_ GRID: Campos numéricos.

o CLASE TEXT ITEM_ GRID: Campos alfanuméricos.

o CLASE ARCHIVO_GRID: Campo que va almacenar un archivo, ver apartado: Gestion
de Archivos.

o CLASE DATE ITEM_GRID: Campos de tipo fecha.

Clases de propiedad para campos que no se encuentren en un bloque multiregistro:

o CLASE DISPLAY ITEM: Campos de visualizacion.

o CLASE TEXT ITEM: Campos alfanuméricos.

o CLASE TEXTAREA ITEM: Campos que muestran varias lineas y permiten retornos
de carro en el texto introducido en él.

@M EDISA

o CLASE TEXT ITEM NUMBER: Campos numéricos.

CLASE_LIST ITEM. Campos de lista desplegable.

o CLASE LIST COMBO BOX ITEM: Campos de tipo list-item en donde el usuario
puede teclear un nuevo valor distinto a los prefijados.

o CLASE TLIST ITEM: Es similar al list-item, pero el usuario visualiza més de una

e}

opcion.
o CLASE ARCHIVO: Campo que almacenara un archivo, ver apartado: Gestién de
Archivos.
o CLASE DATE ITEM: Campos de tipo fecha.
o Clases de propiedad validas tanto para multiregistros como para items que no estén en un
multiregistro:

o CLASE BUTTON. Botones.
o CLASE CHECK BOX. Campos de tipo check.
o CLASE RADIO _GROUP. Campos de seleccion de tipo radio.

o Clases de para logos e imagenes:
o CLASE IMAGEN. Al asignar esta clase ya se incorpora el menu contextual para cargar
la imagen.
o Clases de propiedad para objetos que no sean items.

o CLASE MARCO: Marcos de agrupacion de objetos.

CLASE FORM: Clase de formulario.

CLASE_BLOQUE: Clase para bloques que no sean multiregistro.

CLASE BLOQUE_REG UNICO: Clase para bloques que solo puedan tener un solo
registro, por ejemplo, pantallas de filtros para consultas.

CLASE BLOQUE_SCROLL: Clase para bloques multiregistro.

CLASE PAGE. Clases para Lienzos.

CLASE VENTANA. Clase para ventanas.

CLASE_LOGQO: Clase para los logos (Obsoleta).

O O O

O O O O

Nota: Los marcos tienen propiedad de titulo, pero trataremos de no ponerles nunca un titulo ya que no se
puede modificar por codigo y por tanto no se puede traducir.

Campos de tipo elemento de lista

En Forms no existe la propiedad de bisel de un campo de tipo lista desplegable, por tanto, siempre va a
tener apariencia de hundido, y no queda bien dentro de un grid de datos, por tanto, trataremos de ponerlo
como registro Ginico o evitar su uso.

Ejecucion de programas por coédigo

En Libra hay multiples variantes de programas y no todas ellas tienen un ejecutable de forms asociado, por
ejemplo, programas de tipo “Ejecuta Metadatos”, “Programas” ..., no se pueden llamar usando
CALL FORM o OPEN_FORM y en su vez hay que utilizar FMENU.LLAMA FORM.

FMENU.LLAMA_FORM tiene los mismos parametros que CALL_FORM y por tanto se puede reemplazar
uno por otro sin problema, de todas formas, los pardmetros que se pasan a los programas no se pueden pasar
con una lista de parametros de Forms ya que esos parametros en ocasiones tienen que ser convertidos al
formato que acepte el programa que se quiere ejecutar, para ello hay que construir la lista de parametros de
tipo “pkpantallas.tabla_param llamada plug in” y antes de llamar a FMENU.LLAMA FORM hay que
indicar que se quieren usar con el procedimiento FMENU. SET PARAMETROS LLAMA FORM.

12

@M EDISA

Para construir la lista de pardmetros hay que tener una variable de tipo
“pkpantallas.tabla_param llamada plug in” y para ir cargando parametros se llamard a
FMENU.ADD PARAMETRO(<cédigo parametro>, <tipo>, <valor>);

e <cddigo parametro>: Nombre del pardmetro que espera el programa llamado.

e <tipo>: Forma de interpretar el valor indicado en <valor>, en el caso de pasar ‘C’ el valor indicado
en <valor> se considera constante. Si se pasa ‘R’ considera que se estd indicando
BLOQUE.CAMPO y que en el momento de incorporar el parametro debe de leer el valor de ese
campo.

e <valor>. Dependiendo de <tipo> sera un valor constante 0o BLOQUE.CAMPO.

Ejemplo:

DECLARE
v_t_parametros pkpantallas.tabla param llamada_plug_in;
BEGIN
FMENU.ADD PARAMETRO (v_t_parametros, 'P_CODIGO', 'C', '001'");
FMENU.ADD PARAMETRO (v_t_parametros, 'P_CLIENTE', 'R', 'B1.CLIENTE');
FMENU.SET_PARAMETROS_ LLAMA FORM(v_t parametros);
FMENU.LLAMA FORM ('programa', NO_HIDE, DO REPLACE, QUERY ONLY) ;
END;

Si en el parametro “display” (es decir, el segundo pardmetro de FMENU.LLAMA_ FORM) se pasa el valor
SESSION, en vez de ejecutarse el programa con un CALL _FORM se ejecutara con un OPEN_FORM, de
manera que el programa llamador no se queda a la espera de que termine el programa llamado.

Campos de visualizacién de descripciones

Para los campos que visualicen la descripcion almacenada en otra tabla, usaremos como nomenclatura el
nombre del campo cédigo con el prefijo D .

Por ejemplo, si tenemos el codigo del cliente y tenemos que visualizar su nombre, y el coédigo del cliente
se encuentra en un campo llamado CODIGO_CLIENTE, el nombre del cliente se mostrara en un campo
llamado D CODIGO_CLIENTE.

Al campo en donde queremos ver la descripcion le aplicamos la clase de propiedad
CLASE_DISPLAY_ITEM o CLASE DISPLAY ITEM_GRID.

En el mantenimiento de programas y programas personalizados en la pestafia “Avanzadas de Campo” hay
un campo “Nombre de Columna Consulta”, en este campo se metera la SQL para obtener la descripcion.

Por ejemplo en un programa en el que se tenga que obtener el nombre del cliente en el campo
D CODIGO CLIENTE, se introducira en el mantenimiento de programas un campo

D_CODIGO_CLIENTE y en “Nombre de Columna Consulta” se introducira la siguiente sentencia (SELECT
nombre FROM clientes c WHERE c.codigo_rapido = clientes prueba.cliente AND

c.codigo_empresa = clientes prueba.empresa).

Se puede observar que se usa CLIENTES PRUEBA en la WHERE en vez de un alias, en esta consulta
para hacer referencia a la tabla a la que esta asociado el bloque lo hay que hacer por el nombre de la tabla,
no se puede usar un alias.

13

EDISA

m

Archivo Opciones Edicién Desplazamiente Consulta Ventana Ayuda

M4 b M@ [E

(B % M+ d8 @ QL a

LIBRA EDISA

BT 1% @ A @

By |Programas | Campo Bloque AvanzadasdePrograma Plugin Pestaias Ventanas PardmetrosPlugin Informes Botnera Historia
04/06/2014 13:38:15
5 Programa mico Campo Codigo Tipo Impresora Ambas ~ Archivo Excel Si- Desde el report -
Descripcion MACROCONSULTA (VISTA 360) Tipo Programa Consuta ~ Cerrar Report Background Segin Usuario ~ Destine Usuario -
Blogue Descripcién Excel Seleccién de campos a enviar a Excel
ALBCOMP ALBARAN_COMFRAS_C “ Segin Usuaric ¥ Segln Usuario v
ALBCOMPLIN ALBARAN COMPRASL Cocigo PIfSal en susbtucién de la generacion XLS genérica
ARTCOMP Detalle de compras de articuios al
ARTICULOS_SUSTITUIDOS ARTICULOS _SUSTITUIDOS
ART_PED_VTA Detalle de pedidos de venta de articulos - =
Campo Etiqueta Estandar Lista de Valores (“I‘"h"""f [Obligar | Desactivar Modificacion
D_CENTRO_CONTABLE [a [Ocultar | Desactivar Navegacién
D_CODIGO_ALMACEN [[Deshabilitar [validacion Filtro
D_ORGANIZACION_COMPRAS jmf] jecutar Consulta
HAY_ASOCIACION CRM m Cléusula Where Lista de Valores
HAY_REPLICACION_VTA [=
V_CENTRO_CONTABLE N
V_CODIGO_ALMACEN]
V_DEPOSITO |
V_DIVISA [
V_FECHA m
V_FECHA_ASIENTO r
V_IMPORTE_TOTAL_ALBARAN N
V_NUMERQ_ASIENTO_BORRADOR [hd
Calendario Ne ~ Tipo LV. Normal ~ Lista de Valores
LY i =L_Selccciin Archivg = L
Nombre Columna Consulta (SELECT c.nombre FROM caracteres_asiento ¢ WHERE c.codigo = albaran_compras_c.centro_contable AND c.empresa = albaran_compras_c.codigo_empresa)
g
Cédigo Pl/Sal de Validadién Cédigo Pl/Sql de Entrada en Campo
ry -
v v

Registro: 11

Es posible indicar que la consulta se obtenga en tiempo de ejecucion de una determinada lista de valores,
para ello en el campo “Nombre Columna Consulta” en vez de introducir la consulta se pulsa sobre el boton

de lista de valores o con F9 para ir a un asistente.

Archivo Edicién Desplazamiento Consulta Ventana Ayuda

€ 4> »l I+ e®l (ol

M Programas 1]

Programas ~ Campo Blogue de Progi Plug-in Ventanas Plug-in Informes Botonera Historia
O Plantillas 07/06/2022 13:31:38 81
Programa o001 Descripdén MACROCONSULTA (VITA 360) Cédigo Tipo Consulta
Bloque Descripcién Gréfico Excel Seleccién de campos
BALBLIN ALBARAN_VENTAS_LIN “* Munca Segiin Usuario Seg(in Usuario
Cbdigo Pl/Sql en sustitucién de la generacién XLS genérica
M Asistente columna descripcion asociada a Lista de Valores =
Asistente Columna Descripcion
-
Lista Valores CG_ARTICULOS Lista de Valores de Articulos
[” El campo cddigo puede ser NULL :!var :ad'ﬁaﬁ""
V_CENTRO_COSTE Nombre Columna ta Campo NVL descripcion_srticulo dl:arnzuqaaon
V_CODIGO_ORG_PLANTA L Descripdn L R N TS
(SELECT :SF:pk_va_articulos.get_campo_ _art(p_emp 2 .codigo_empresa,p_usuario=>: «
V_CONTRATO_ASOCIADO global.usuario,p_alias=>'a"):EF: FROM articulos a WHERE a.codigo_articulo={codigo_articulo} AND a. lecutar Consulta
V_DESCRIPCION_ARTICULO codigo_empresa={codigo_empresa}) v "~
V_DESCRIPCION_LOTE
V_DESCRIPCION_LOTE2 Variable Origen S
\ DS IO odigo_artculo -
ViDToli codigo_empresa albaran_ventas_lin.empresa
V_DTO2
V_DTO3
V_DTO4
V_DTOS
V_DTO6 hd -
Calendario @ Q®
Validar desde L.V.
Nombre Columna Consulta LV:0G_ARTICULOS:N:codigo_articulo=>albaran_ventas_lin.articulo,codigo_empresa=>albaran_ventas_lin.empresa:NVL=>descripcio Tamaiio Miximo
Nombre Columna Orden Descendente Excel < Méscara
Cédigo PY/Sql de Validadén | Bloquear salto de campo en LV. Cadigo PY/Sql de Entrada en Campo Valor por Defecto [
- -
- -

14

@M EDISA

El asistente nos pedira los siguientes datos:

o Lista de Valores: Codigo de la lista de valores que se utilizara para obtener la descripcion.

o El campo cédigo puede ser null: Si activamos esta check, le estamos indicando que el codigo
puede ser nulo y por tanto debe optimizar la consulta para esa casuistica.

o Campo Coédigo: Solo aparece si se activa "El campo cdodigo puede ser null" y ahi podemos

indicar qué campo consideramos cddigo, en el caso de no indicarlo se considerara la primera
variable de la consulta de la lista de valores.

o Campo NVL: Indicamos que unicamente se realizard la consulta si el campo que se indica es
NULL, por ejemplo, si es una consulta sobore ALBARAN VENTAS LIN, indicaremos el
campo ALBARAN VENTAS LIN.DESCRIPCION ARTICULO, ya que si el albaran tiene
la descripcion almacenada no hace falta ir al articulo a buscarla.

A continuacion, hay que mapear cada variable de la consulta con el campo de la tabla. En el ejemplo
anterior, si la tabla es ALBARAN VENTAS LIN la variable {codigo articulo} se mapea con
"albaran_ventas_lin.articulo" y la variable {codigo _empresa} con "albaran ventas lin.empresa".

IMPORTANTE: En el caso de que se permita insertar, modificar o borrar registros hay que activar la
propiedad de clave primaria a los campos que sean clave primaria. Si la tabla no tiene clave primaria no se
puede usar esta opcion, y habra que usar el disparador POST-QUERY .

15

@M EDISA

Listas de Valores

Como principal ventaja de este sistema de listas de valores es que se pueden personalizar de forma muy
sencilla para una determinada instalacion.

Para usar las listas de valores solo se necesita incorporar un grupo de objetos (LISTA VALORES) a los
programas.

Este sistema de listas de valores también da soporte de validacion del campo incluso si no se ha
introducido el dato por la lista de valores, de esta forma la validacion de los programas que usan una
misma lista de valores siempre va a ser exactamente igual, con lo que se optimiza el uso de la memoria
SHARED POOL de la base de datos.

Lista de Valores de Estados @X
Cddigo Nombre
EZEI I, PR UERA ~
AFGA AFGANISTAN
AFRI REPUBLICA DE SUDAFRICA
ALBA ALBANIA
ALEM ALEMANIA
ANDO ANDORRA
ANGO ANGOLA
ANHO ANTILLAS HOLANDESAS
ANTA ANTARTIDA
ANTI ANTIGUA Y BARBUDA
ARAB ARABIA SAUDI
ARGE ARGENTINA
ARGL ARGELIA
ARME ARMENTA
AUS AUSTRIA
AUST AUSTRALIA
AZER AZERBAYAN
BAHA BAHAMAS
BAHR BAHREIN
BANG BANGLADESH
BARB BARBADOS
BELG BELGICA
BELIL BELIZE v
¢ 44> PiEe 2R

MUY IMPORTANTE: Para el correcto funcionamiento de los programas, todo el coédigo que se meta en
los disparadores PRE-RECORD, PRE-BLOCK, WHEN-NEW-BLOCK-INSTANCE, WHEN-NEW-
RECORD-INSTANCE debe de ir entre la condicion IF NOT lv.viene_de_lista THEN a excepcion de la
llamada al DISPSTD correspondiente, por ejemplo:

DISPSTD.WHEN NEW_BLOCK_ INSTANCE;

IF NOT lv.viene de_lista THEN
<cédigo del disparador>
END IF;

Limitaciones

Las listas de valores tienen como limitacion principal el nimero maximo de columnas, que so6lo pueden ser
20, estas pueden ser de tipo alfanumérico, numérico (también en Forms 14c se permite el tipo fecha). Si
hace falta una lista de valores mas compleja la deberemos implementar dentro del programa o mediante un
plug-in (ver apartado de plug-in).

No estan soportadas sqls que hagan una UNION de varias SELECT, en caso de ser necesario se tendra
que crear una vista de base de datos. Tampoco estan soportadas listas de valores que hagan un DISTINCT,
en ese caso habra que afiadir al final de la where un GROUP BY por todos los campos que saca la consulta
para conseguir el mismo efecto.

Pasos para crear una lista de valores

Para crear una lista de valores desde cero, iremos al mantenimiento de listas de valores de libra,
(U_MLISVA).

16

@M EDISA

eoe LIBRA DESARROLLD ELIAS - v6.0.7.6.3.5
Archivo Opciones Edicién Desplazamiento Consulta Ventana Ayuda
4 <> bl =+ BE / E R L3
[=M Listas de valores
Listas de Valores ~ Opciones Avanzadas Observaciones

- Columna Descripcion 04/04/2018 15:00:23 1
é codi Titulo Lista Valores Columna Cédigo | Programa Pardmero Liamada
CR E Lista de Valores de Categorias Estadisticas 1 2crm_meoesa “ utilizar Valores Fijos
1 | CRMFAMILIAS_LIN Lista de Valores de Codigos Estadisticos 1 20m_moesa
CRMFAMILTAS_LIN_ARBOL Lista de Valores de Cédigos Estadisticos 1 3cm_mcoesa Idioma
CRMFAMILIAS_LIN A 1 Lista de Valores de Cédigos Estadisticos 1 2erm_meoesa P_CODIGO | Titulo Lista en Idioma
CRMFAMILIAS_LIN_A_10 Lista de Valores de Codigos Estadisticos 1 20m_meoesa P_CODIGO =
CRMFAMILIAS_LIN_A_2 Lista de Valores de Cédigos Estadisticos 1 2am_mcoesa P_CODIGO
CRMFAMILIAS_LIN_A_3 Lista de Valares de Cadigos Estadisticos 1 2cm_mcoesa P_CODIGO
CRMFAMILIAS_LIN_A_4 Lista de Valores de Codigos Estadisticos 1 20m_mcoesa P_CODIGO
(CRMFAMILIAS_LIN_A_5 Lista de Valores de Codigos Estadisticos 1 2orm_mcoesa P_CODIGO
CRMFAMILIAS_LIN_A_6 Lista de Valores de Codigos Estadisticos 1 20m_meoesa P_CODIGO
CRMFAMILIAS_LIN_A_7 Lista de Valores de Codigos Estadisticos 1 20m_mcoesa P_CODIGO =
CRMFAMILIAS_LIN_A_8 Lista de Valores de Codigos Estadisticos 1 2am_meoesa P_CODIGO -~ Ldioma
Consulta SQL Clausula Where por Defecto
SELECT numero 1, descripcion 2, rowid rowid_lov FROM crmfamilias_cab “ empresa = :global.codigo_empresa -

Nombre Columna Consulta Descripcién (SELECT Ivermifc.descripdon FROM crmfamilias_cab vermfc WHERE Ivermfc.numero={numero} AND lvarmfc.tipo={tipo} AND P
Desactivar Totalizacion en Listas de Valores de Multiseleccién Totalizadas
Ancho en Packet

Tipo Orden Bsqueda Contextual
N° Col. Tipo Orden | Descripcién Columna Ancho | Méscara | 1dioma
N1 A Cédigo 1 ~ | Descripcién Columna en Idioma
2C 0 A Desripdén 35

de / Segln Usuario - Idioma

En el codigo de la lista de valores se debe introducir siempre que sea posible el nombre de la tabla, solo
usaremos otro nombre cuando queramos hacer una personalizacion especifica de una lista de valores.

El titulo que queremos que aparezca en la ventana que abre la lista de valores lo introduciremos en el campo
Descripcion.

Cualquier columna puede contener el cédigo que queremos devolver al campo desde donde que se llama a
la lista de valores, esto se especifica en el campo Columna Cédigo, por tanto, debera de contener un valor
entre 1 y 20 dependiendo de los campos que se visualicen. Este campo también se usara para la validacion
del campo cuando se introduce de forma manual por teclado. Internamente para hacer la validacion le
afiadira a la WHERE de la lista de valores la condicion de que el campo especificado como codigo sea igual
al valor introducido por el usuario.

Podemos definir en el campo Columna Descripcion el nimero de columna de la que se ha de obtener la
descripcion a devolver al programa, por tanto, debera de contener un valor entre 1 y 20 dependiendo de los
campos que sean visualizados, la lista de valores devolvera esta descripcion al campo con el mismo
nombre del campo desde el que se llama a la lista, pero con el prefijo D_. Esto obliga a ser muy estrictos
en la nomenclatura que se utiliza en los campos que muestran descripciones.

La base para mostrar la lista de valores es una consulta SQL de tipo SELECT ... con la siguiente
particularidad: Los campos que queremos que se visualicen deberan de contener un alias del tipo:

e Columnas con valor alfanumérico: c1, c2, ..., c20.

e Columnas con valor numérico: nl, n2, ..., n20.
e Forms 14¢: Columnas con valor fecha: f1, 12, ..., £20.
Notas:

e Si hemos especificado una columna de un tipo no podemos especificar la misma de otro tipo, es
decir, si hemos especificado el alias c1 no podremos tener otra columna con el alias nl.

e Sise quiere sacar una fecha y la lista de valores unicamente va ser utilizada en Forms 14c¢ lo mejor
es ya declararla como tipo fecha, pero si la lista de valores también se puede utilizar en
instalaciones con Forms 12c¢ la meteremos como un campo alfanumérico y para que ordene
correctamente no se le aplicard ninguna conversion de tipo, es decir, si se pone como
TO_CHAR(campo_fecha, DD/MM/YYYY") c4, cuando el usuario haga una ordenacion la hara
alfanumérica en vez de fecha, por lo que lo correcto seria simplemente poner campo_fecha c4.

MUY IMPORTANTE 1: Las columnas a visualizar han de tener el alias cx 6 nx donde x es un nimero
entre 1 y 20 y a continuacién una coma y un espacio.

17

@M EDISA

MUY IMPORTANTE 2: Si hay columnas que se calculan con una subquery (SELECT campo FROM
XXxXX), es recomendable meter antes del FROM tabla_principal la etiqueta /*FRLV*/ para que el entorno
busque de forma maés precisa el punto en donde se encuentra la tabla principal. Si no se indica se intentara
localizar, pero hay casos en los que no sera capaz y puede producir un funcionamiento con errores.

Ejemplos:
Casos incorrectos:
o SELECT nombre cl , codigo c2,:Incorrecto ya que hay un espacio después del alias cl.
o SELECT nombre cl,codigo c2: Incorrecto ya que no hay espacio que separa la coma del alias

cl y de la columna siguiente:

Lo correcto para los dos casos anteriores seria:

. SELECT nombre cl, codigo c2

Aparte de los campos que se visualizaran en la lista de valores también deberemos sacar siempre el rowid
de la tabla principal de la SELECT con el alias rowid_lov y este campo debe de ser el Gltimo de los campos
que selecciona la sentencia SQL.

Ejemplo:

SELECT codigo cl, nombre c2, rowid rowid lov FROM agentes

Ejemplo mas complejo:

SELECT codigo_articulo C1,

(SELECT DECODE (TIPO_DESC_ART, 'V',articulos.descrip comercial, 'C',articulos.descrip_compra,
'T',articulos.descrip_tecnica,articulos.descrip_comercial)

FROM usuarios WHERE usuarios.usuario =:GLOBAL.USUARIO) C2, rowid rowid_lov

/*FRLV*/ FROM ARTICULOS

NOTA: véase que se ha afadido la etiqueta /*FRLV*/ para indicar en donde comienza el FROM principal
de la consulta.

Para cada programa podremos especificar una clausula WHERE especifica para la lista de valores, pero en
la misma lista de valores ya podemos especificar una por defecto. En la clausula WHERE se pueden usar
referencias a campos, variables globales, ... de Forms, un ejemplo tipico seria empresa =
:global.codigo _empresa

Es posible controlar desde funciones de base de datos la consulta que ejecutara una lista de valores, para
ello entre las etiquetas :SF: y :EF: se puede introducir una funcién que devuelva la SELECT o parte de
ella.

Por ejemplo, en el caso que se mostrd en “Ejemplo mas complejo”, se podria simplificar la consulta para
evitar que se haga uso de la tabla USUARIOS por cada fila que viene de la tabla quedando la consulta de
la siguiente forma:

SELECT codigo_articulo c1, :SF:pk_va_articulos.get_campo_descripcion_art(:global.usuario) :EF: c2, rowid
rowid_lov
FROM articulos

En este caso, :SF:pk va articulos.get campo descripcion_art(:global.usuario) :EF: devolvera
descrip_comercial, descrip_compras o descrip_tecnica en base a la parametrizacion de usuario validado.
De esta forma si el usuario tuviese parametrizada la descripcion comercial la consulta que tendria la lista
de valores seria: SELECT codigo_articulo c¢l, descrip_comercial c¢2, rowid rowid lov FROM
articulos, al simplificar la consulta se consigue un mejor rendimiento en la ejecucion de la lista de valores.

Mediante esta funcionalidad se podria cambiar el 100% el origen de la consulta, por ejemplo:
:SF:F TEST(:global.codigo empresa, :global.usuario) :EF:, ejecutaré la funcién F_TEST que
devuelve la consulta a utilizar. Ejemplo de F TEST:

CREATE OR REPLACE FUNCTION F_TEST (p_empresa VARCHAR2, piusuario VARCHAR2) RETURN VARCHAR2 IS
BEGIN

RETURN ('SELECT codigo_articulo cl, ''PRUEBA'' c2, rowid rowid lov FROM articulos');

END;

18

@M EDISA

Para cada columna que se va a visualizar en la lista de valores hemos de introducir los siguientes campos:

o Numero: Numero correlativo entre 1 y 20 que identifica la columna, debe de corresponder
con el nimero especificado en el alias en la SELECT.
o Tipo: Puede contener dos valores:

o C: Columna alfanumérica.
o N: Columna numérica.

o Orden: Cuando se lanza la lista de valores ya se puede forzar un ordenamiento inicial, en este
campo se debe especificar el nimero de orden que va a ocupar este campo dentro del ORDER
BY de la sentencia SQL. Si se introduce 0 se indica que no se quiere que ese campo forme
parte de la ordenacion inicial.

o Tipo Orden: Tipo de ordenacion inicial del campo, puede contener dos valores:
o A: Ascendente.
o D: Descendente.

o Descripcion Columna: Titulo que va a tener la columna.

o Ancho: Ancho en pulgadas de la columna.

o Ancho Pocket: Ancho en pulgadas de la columna cuando la lista se muestra en un puesto que
es de tipo “Pocket”.

o Mascara: Solo se puede aplicar a columnas numéricas y se pondra la mascara de formato con

la que se debe de mostrar el numero. En caso de que sean cantidades se puede poner CTD y
aplica la mascara de formato correspondiente a los decimales establecidos en la empresa para
las cantidades.

o Desactivar totalizacion en Listas de Valores de Multiseleccion Totalizadas: Hay un tipo
de lista de valores en donde el usuario puede seleccionar los registros y las columnas
numéricas son totalizadas, si se activa esta check para un campo numérico la columna no sera
totalizada.

o Independiente de Mayusculas / Minusculas: Si se indica “Si”, cuando se haga una busqueda
en ese campo, se hara independientemente de que en la tabla esté almacenado en mayusculas
/ minusculas e independientemente de que el patrén de busqueda esté en mayusculas o
minusculas. Indicando “No” las bisquedas seran sensibles a maytsculas o minusculas. Si se
indica “Segun Usuario” se utilizara el valor por defecto para este fin indicado a nivel de
configuracion de empresa / usuario.

. Busqueda Contextual: Mediante esta check se pueden indicar las columnas sobre las que la
busqueda contextual debe realizar la buisqueda. En el supuesto de que no esté marcada ninguna
columna, la busqueda contextual se aplicara s6lo sobre la columna que estd marcada como
“Columna Descripcion”, pero si se marca alguna columna como “Busqueda Contextual”, la
“Columna Descripcion” sera ignorada, a no ser que se marque también esta columna.

Tanto el titulo de la ventana como el titulo de la columna se pueden cambiar por idioma, para ello se debera
cubrir las dos secciones de idiomas.

Existe una opcion en la botonera vertical para exportar la lista de valores en formato SQL.

Asociar programa a una Lista de Valores

Es posible asociar un programa a una Lista de Valores. Esta funcionalidad es muy 1til cuando el usuario
saca la lista de valores y se da cuenta que el registro que necesita no existe, por tanto, se da la posibilidad
de navegar al programa que se especifica para poder crear ese registro.

Para indicar el programa asociado a la lista de valores indicaremos el nombre del programa en el campo
Programa. El boton de navegacion Gnicamente se habilitara si este campo esta cubierto y el usuario tiene
permisos de altas en ese programa.

Aparte de navegar al programa asociado desde la lista de valores cuando el usuario entra en el campo que
tiene la lista de valores puede hacer doble click sobre el campo o pulsar sobre el boton de hipervinculo del
menu y lo llevaria también al programa sin necesidad de abrir la lista de valores.

19

@M EDISA

Cuando se navega al programa se pueden pasar dos parametros al programa llamado:

Valor que contiene el campo: Para pasar el valor que tiene el campo hay que indicar el nombre
del parametro en “Parametro Llamada”

Coédigo de la lista de valores: Se puede pasar el codigo de la lista de valores al programa para
que pueda actuar de forma distinta segun la lista de valores desde donde es llamado. Para ello hay
que indicar en que parametro del programa llamado hay que pasar el codigo de la lista de valores
cubriendo el campo “Parametro envio codigo de LV al llamar programa” en la pestafia “Opciones
Avanzadas”.

Segunda Clausula Where para una lista de valores.

A una lista de valores podemos especificar una segunda clausula where, y cuando se especifica al llamar a
la lista de valores aparecera un botdn para poder conmutar la consulta entre la clausula where normal y la
segunda. Para el boton que aparece le indicaremos qué etiqueta debe de tener seglin la clausula where que
estd aplicando, para eso son los campos “Etiqueta Boton Where Defecto” sera la etiqueta que muestre
cuando se esta filtrando por la where por defecto y “Etiqueta Boton Where Defecto 2” sera la etiqueta que
muestre cuando esta filtrando por la segunda lista de valores.

Se puede indicar cuél de las clausulas where debe de usarse para efectuar la validacion del campo, para ello
se afiadio el desplegable “Tipo Where Validacion” que puede tener los siguientes valores:

Principal: Siempre se valida usando la clausula where por defecto, no se usa la segunda clausula
where en la validacion.

Secundaria: Siempre se usa la segunda clausula where, la clausula where por defecto no sera
usada en la validacion.

Personalizada: Al seleccionar esta opcion se habilita un nuevo campo donde indicar la una
clausula where especifica para la validacion independiente de las usadas en para mostrar los
registros en la lista de valores.

M LIBRA EDISA - =
Archivo Qpciones Edicion Desplazamiento Consulta Ventana Ayuda
4 4 b b % (Che & S S EH B 1 1% @ 4 @
M) Listas de valores (LIBRA 5.3.3 - MAQUINA VIRTUAL F11R3LIBRA)
Ea Listas de Valores Opciones Avanzadas Observaciones
@ Codigo ARTICULOS Descripcion Lista de Valores de Articulos
Argumento 1 para TRANSLATE de bisqueda contextual | Activar Enviar a Excel
Argumento 2 para TRANSLATE de basqueda contextual M@ Columna de atributo visual de registro

20

Cddigo PI/5ql de Prevalidacidn .
MAME_IN{SYSTEM. TRIGGER ITEM) : = PKVALIDACIONES.COMPRUEEA_ARTICULO(:global. & Posicicn X
codigo_empresa, NAME_IN{SYSTEM. TRIGGER_ITEM'), NULL, MULL, TO_DATE(:global. Basicisn
fecha_trabajo, 'DD/MM/YYYY"), :global.usuario, :global.superusuario, :p_tipo_programa, :
p_parar_ejecucion, :p_tipo_mensaje, :p_codigo_mensaje, :p_texto_mensaje);

Cadigo Pl/5ql de Validacian

N2 Columna a aplicarle el color

Tipe Where Validacion Principal -
Etiqueta Botdn Where Defecto

Etiqueta Botdn Where Defecto 2

Clausula Where por Defecto 2

Clausula Where para Validaddn

Registro 7117

@M EDISA

Por ejemplo podemos hacer que la lista de valores CLIENTES GESTION habilite un botén donde ponga
“Bloqueados” y al pulsar sobre ¢l consultar los clientes que estdn bloqueados, para ello metemos en el
campo Clausula Where por Defecto 2 la siguiente where: WHERE codigo_empresa = :GLOBAL.codigo empresa

AND EXISTS (SELECT 1 FROM bloqueo clientes WHERE empresa = :GLOBAL.codigo empresa AND
codigo_cliente = codigo _rapido AND (usuario = :GLOBAL.usuario OR wusuario IS NULL) AND
(TRUNC (SYSDATE) >= desde fecha) AND (TRUNC (SYSDATE) <= hasta fecha)) AND

PKVALIDAR _ENTIDADES.CLIENTE (CODIGO_RAPIDO, : GLOBAL.CODIGO EMPRESA, :GLOBAL.USUARIO, SYSDATE)="'OK'

Y en el campo “Etiqueta Boton Where Defecto” metemos el texto: Bloqueados y en “Etiqueta Boton Where

Defecto 2” metemos el texto “Desbloqueados”.

Al pulsar sobre la lista de valores saldra de la siguiente forma:

M) Lista de Valores de Clientes
Cadigo Mombre Razdn Sodial
m COMSTRUCCIOMES LOECHE, S.A. COMNSTRUCCIOMES LOECHE, 5.A. -
ooo2 JUAM JOSE RODRIGUEZ PAZ DISTRIBUCIOMNES JU10
0003 DISTRIBUCIOMNES GALIOR, S.L. DISTRIBUCIONES GALIOR, S.L.
0004 SUMINISTROS INDUSTRIALES GALLARDONM,S. A, SUMINISTROS INDUSTRIALES GALLARDOM S, A.
0005 COMPARIA PETROLIFERA ITALIAMD, S5.A. COPIMA LTDA.
000s EDISA MADRID, 5.A. EDISA MADRID, 5.A.
0007 JOMNH WHETER. WHITE JOMNH WHETER. WHITE
0003 MATERIALES DE COMSTRUCCION GARCIA, S.L. MATERIALES DE COMSTRUCCION GARCIA, S.L.
000s COMSTRUCCIOMES SAN MARCOS, S.L. COMSTRUCCIOMES SAN MARCOS, 5.L.
0010 COOPERATIVA EL GALEON, 5.A. COOPERATIVA EL GALECHN, 5.A.
0011 AFAMSA ACTIVOS FIJ0S, 5.A.
0012 VEMDAL, 5.L. VENTAS POR CATALOGO DEL CENTR.O, 5.L.
0013 MATERIAS COMNSTRUCAO JOAQUIM ALMEIDA LDA MATERIAS COMSTRUCAQ JOAQUIM ALMEIDA,LDA
o014 MABER. MANUFACTURAS, 5.A, JOSE MAMUEL PEREZ
0016 CARPINTERIA METALICA SIL, 5.L. CARPINTERIA METALICA SIL, 5.L.
0017 COMPANIA DE TRANSPORTES LEVANTINA LETRACO, 5.A,
0020 DISTRIBUCIOMES GALAICAS, S.L. DISTRIBUCIOMES GALAICAS, S5.L.
0021 ALTOBUSES LA UMION, S.L. ALTOBUSES LA UMION, 5.L.
0022 JOSE GARCIA BERMUDEZ HILARIO TALLERES BERMUDEZ
0027 CASTRO BELLO, S.A. CASTRO BELLO, 5. A,
0028 IGMACIO RODRIGUEZ GOMEZ IGNACIO RODRIGUEZ GOMEZ
0029 ALMACEN CORUIMA ALMACEN CORUIRIA -
& Bloqueados TRERERCNEREREAE T

Y al pulsar sobre el boton “Bloqueados” saldra:

@&

de Clientes

Mombre
CONSTRUCCIOMES MANCHOM, 5.A.

Desblogueados

Razon Sodal
CONSTRUCCIOMNES MANCHON, 5.A. -~

M| (4] k||] S|« N

NOTA: Cuando se asigna una lista de valores a un programa se puede establecer para ese campo en
concreto este funcionamiento sin alterar la lista de valores.

21

@M EDISA

Clausulas Where dinamicas.

El objetivo de generar condiciones “where” dindmicas sobre una lista de valores es mejorar la velocidad
de carga de estas.

El principio de funcionamiento se basa en integrar una funcion que devuelva una where lo mas adecuada
posible a la instalacion en base al usuario y la empresa a la que se ha conectado.

La idea es hacer una funcion que devuelva la where a afiadir a la lista de valores, para ello, la funciéon que
devuelve la where ira entre las etiquetas :SF: y :EF:

Ejemplo: empresa = :global.codigo empresa :SF:F MI FUNCION (:global.usuario, :global.empresa,
'clientes.codigo_rapido') :EF:

Codigo de ejemplo de F MI _FUNCION que aplicara a la where el control de CLIENTES PERMITIDOS
unicamente cuando tiene datos:

CREATE OR REPLACE FUNCTION f mi_funcion(p_usuario VARCHAR2, p_empresa VARCHAR2, p_campo VARCHAR2) RETURN VARCHAR2 IS
v_cw pkpantallas.type _max plsqgl_varchar2;
v_hay_reg VARCHAR2(1);

CURSOR cur_existe(pc_usuario VARCHAR2, pc_empresa VARCHAR2) IS
SELECT 'S’
FROM clientes_permitidos cp
WHERE cp.usuario = cur_existe.pc_usuario
AND cp.empresa = cur_existe.pc_empresa;
BEGIN
OPEN cur_existe(p_usuario, p_empresa);
FETCH cur_existe INTO v_hay_reg;

IF cur_existe%NOTFOUND THEN
v_hay_reg := 'N';
END IF;

CLOSE cur_existe;

IF v_hay_reg = 'S' THEN

v_cw := 'AND EXISTS (SELECT 1 FROM clientes_permitidos cp WHERE cp.usuario = :global.usuario AND cp.empresa = :global.codigo_empresa AND
cp.cliente = ' || p_campo || ")';
END IF;

RETURN (v_cw) ;

EXCEPTION

WHEN OTHERS THEN
pkpantallas.log(sqlerrm, 'F_MI_FUNCION', 'OTHERS');
RAISE;

END f mi_funcion;

Si el usuario tiene registros en la tabla CLIENTES PERMITIDOS aplicara la siguiente condicion: empresa
= :global.codigo empresa AND EXISTS (SELECT 1 FROM clientes permitidos cp WHERE cp.usuario
= :global.usuario AND cp.empresa = :global.codigo empresa AND cp.cliente =
cl.codigo rapido)

Si no hay registros aplicara simplemente: empresa = :global.codigo empresa

Cddigo PL/SQL de Pre-Validacion

m LIBRA EDISA = =
Archivo Qpciones Edicion Desplazamiento Consulta Ventana Ayuda
M 4 b x 4 4 s 2EI1H 1 /8 @ 410
=)@ Listas de valores (LIBRA 5 3.3 - MAQUINA VIRTUAL F11R3LIBRA)
gy Llstasdevalores | Opoones Avanzadss| Observadones
@ Cadigo ARTICULOS Descripcion Lista de Valores de Articulos
Argumento 1para TRANSLATE de biisqueda contextual | Activar Enviar a Excel
Argumento 2 para TRANSLATE de biisqueda contextual N® Columna de atributo visual de registro
N° Columna a aplicarle el color
Cédigo PIfSal de Prevalidacion N
NAME_IN{SYSTEM.TRIGGER ITEM) : = PKVALIDACIONES. COMPRUEBA_ARTICULO(:global. & FmEI
«codigo_empresa, NAME_IN(SYSTEM.TRIGGER _ITEM'), NULL, NULL, TO_DATE(:global. Posicién Y

fecha_trabajo, DDMWNYYY), idlobal.usuario, sglobal.superusuario, p_tipo_programa, :

Where Validacién. =
Pp_parar_sjecucion, :p_fipo_mensaje, p_codigo_mensaje, :p_texto_mensaje); Pe Principal

eta Botn Vihere Defecto
eta Botén Where Defecto 2
usuia Where por Defecto 2

om o 4

Clausula Where para Valdacién

Registro: 111

22

@M EDISA

Se puede utilizar el codigo de pre-validacion para ser ejecutado antes de que se realice la validacion con la
SQL de la lista de valores. Esto se ve muy claro con el ejemplo de la tabla ARTICULOS de libra, ya que
el usuario puede teclear el codigo (es lo que valida la lista de valores), el c6digo sindnimo, codigo de barras,
etc. Por tanto, este codigo puede cambiar la introduccion del usuario haciendo una llamada a un paquete de
base de datos.

Para ver con mas detalle como se construye este codigo PL/SQL ver el apartado “Codigo PL/SQL”.
Codigo PL/SQL de Validacion

m LIBRA EDISA -
Archivo Opciones Edicion Desplazamiento Consulta Yentana Ayuda
M4 b M % i Q& s 2818 1 /% @ 2 @
m Listas de valores (LIBRA 5.3.3 - MAQUINA VIRTUAL F11R3LIBRA)
Y \lstasdeValorss | Opdones Avanzadas| Observacones
a Codigo ARTICULOS Descripcion Lista de Valores de Articulos.
Argumento 1 para TRANSLATE de busqueda contextual | Activar Enviar a Excel
Argumento 2 para TRANSLATE de bisqueda contextuzl o Columna de atributo visual de registro 3

e Columna a aplicarle el color
Cadigo P/Sql de Prevaidacién

NAME_IN(SYSTEM. TRIGGER_ITEM) := PKVALIDACIONES.COMPRUEBA_ARTICULC(:global. &
codigo_empresa, NAME_INCSYSTEM. TRIGGER_ITEM), NULL, MULL, TO_DATE(:global, Fosiddn Y
fecha_trabajo, DD/MM/YYYY), ‘global.usuario, :global. superusuario, :p_tipo_programa, :
p_parar_ejecucion, :p_tipo_mensaje, :p_codigo_mensaje, :p_texto_mensaje);

Posicion X

Tipo Where Validacion Principal M
Etigueta Botén Where Defecto

Etigueta Botén Where Defecto 2

Clausua Where por Defecto 2

v

Cadigo PljSql de validadén
DECLARE -
v_stock NUMBER;
BEGIN , .
SELECT SUM(cantided.unidad) Cléusula Where para Validadidn
NTO v_sto
FROM stocks_detallado
WHERE codigo_articulo = NAME_INCSYSTEM, TRIGGER_ITEM)
AND codigo_empresa = :giobal.cocigo_empress;

TF v_stock = 0 THEN
ip_parar_sjecu W,
ip_tpo_mensaj
p_codigo_mensaje :="NO_STOCK';

END TF;

Registro: 11

El codigo PL/SQL se ejecutara en todos los campos que tengan asociada la lista de valores, y se ejecuta
después haberse realizado la validacion contra los registros de la lista de valores, por lo tanto, ya se puede
considerar que el dato que tiene el campo ya es valido, pero requiere una validacion mas exhaustiva usando
PL/SQL. Este PL/SQL se ejecuta de forma adicional al codigo pl/sql de validacion que pueda tener a nivel
individual el campo.

Colorear determinados registros en Listas de Valores

Se puede especificar un determinado color para unos registros de una lista de valores, por ejemplo, para
marcar articulos sin stock, clientes bloqueados,

Ejemplo: Lista de Valores que colorea los articulos que el codigo comienza por 2.

@M Lista de Valores de Articulos

Cddigo Descripddn
COCA-COLA 33 CL. -
158001 COMPRESOR FABRICADO
17000 SOPORTE CENTRAL FRIGORIFICA
150500
200001
200002
200003
200003
300 BICICLETA ESTATICA DE MONTARA MOD. 2322
300222 PLACA BASE AT 4, P ITI, MOD 334C
300300 TARJETA SOMNIDO 240w
300301 TARJETA SONIDO 300w
300500 PLACA COMBO VIDEQ+VOZ 7873
301 SACO PIENSOS 10 KG. GTRAM ROYAL
333333 LADRILLO CARAVISTA 18"
333334 LADRILLO CARAVISTA 207
400000 CUARTO DE BARO MODELO PRIMAVERA 'ROCA’
400001 ACETTE 40W CEPSA LATA S5 L.
400002 FILTRO DE AIRE MOD, 8283 RENAULT
400003 FILTRO DE AIRE MOD. 1312 IVECO
400004 BUJIA 4" MOD.$92 CHAMPION
400005 BUJIA 12 "MOD.5913 CHAMPION -
=) ICIRERRERE AR

23

@M EDISA

Para parametrizar este funcionamiento hay que afiadir una nueva columna a la SQL de la SELECT como
si fuese una columna mas de la lista de valores que devuelva el atributo visual a aplicar al registro y ponerle
un alias cX, siendo X un nimero de columna de tipo caracter no usado en la lista de valores. El campo no
hace falta introducirlo en la lista de campos de la lista de valores, con lo cual no lo muestra en la lista de
valores.

En el ejemplo habria que afiadir lo siguiente Unicamente en la select de la lista de valores:
DECODE (SUBSTR (articulos.codigo articulo, 1, 1), '2', 'ROJO', NULL) c3

También hay que indicarle que la columna numero 3 es la que va a tener la informacion del atributo visual
a aplicar en el campo “N° Columna de atributo visual de registro” de la pestafia “Opciones avanzadas”.

M2 Columna de atributo visual de registro 3

M® Columna a aplicarle el color

Si el atributo visual que se devuelve no existe en el programa no se le asignara ningun color. En programas
compilados en una version 6.4.8 pueden utilizar cualquier color de los definidos en la vista
V_COLORES _ERP, los programas compilados en versiones anteriores tienen que limitarse a colores que
se encuentren definidos en la libreria de objetos OBJETOSPANT.OLB: MARRON, MARRON OSCURO,
MARRON_INTERMEDIO, MORADO, CYAN, AZUL CLARO, AZUL INTERMEDIO, VERDE CLARO,
NARANJA, BLANCO, MARRON CLARO, FUXIA, AZUL VERDOSO, MATE, NEGRO, AZUL MORADO,
VERDE_OSCURO, AMARILLO NARANJA, AZUL OSCURO, ROSACEO, ROJO, VERDE, AMARILLO,
AZUL.

En vez de cambiar el color de todo el registro se puede indicar que unicamente se cambie el color de uno
de los campos, para ello se puede indicar en “N° Columna a aplicarle el color” el nimero de la columna
que se ha de colorear. Esto es util cuando van a ser muchos los registros coloreados para que el usuario no
pierda la referencia del registro en el que se encuentra el cursor.

Filtros en listas de valores

Para versiones de Libra 6.2.1 o superiores existe la posibilidad de que las listas de valores tengan filtros de
forma similar a los filtros de los bloques. Para ello en el mantenimiento de Listas de valores y Listas de
valores se dispone de la pestafia "Filtros" en donde se pueden configurar.

NOTA: Esta funcionalidad es incompatible con las listas de valores con doble clausula where.

Archivo Opciones Edicion Desplazamiente Consulta Ventana Ayuda

. 1 Py - 4
4 4 > bl 03 + 8 8 / BE® A X 2B
[=)™ Listas de valores CEL]
Listas de Valores ~ Opciones Avanzadas Observaciones Filtros
=
Codigo CG_CLIENTES Descripcion Lista de Valores de Clientes
Codigo Descripcion Orden Activo
Clientes que empiezan por una letra 1 v =
-
Filtro Variables
nombre LIKE :letra || '%' -
-
Accion a realizar sobre la lista de valores después de aplicar el filtro Ejecutar Consulta -

24

@M EDISA

Para crear un filtro hay que darle un cédigo, una descripcion y el orden en el que se le mostraran al usuario.
Si se quiere desactivar temporalmente un filtro se puede desmarcar la check “Activo”.

En el campo “Filtro” filtro se pueden utilizar variables que le seran solicitadas al usuario, esas variables se
introduciran directamente en la condicion afiadiendo : (dos puntos) delante, por ejemplo, si queremos al
usuario un rango de fechas, se podria meter algo similar a esto: av.empresa = :global.codigo _empresa AND
av.fecha_pedido BETWEEN :p_desde_fecha AND :p_hasta_fecha. En este caso se indica que se quieren
usar las variables :p_desde fecha y :p hasta fecha, a esas variables hay que indicar la forma en la que se
van a solicitar al usuario, para ello hay que pulsar en el boton “Variables”.

25

Variables del Filtro =

Variables del Filtro

codigo Ftiqueta Lista de Valores Valor por Defecto Orden Obligatorio
ODIGO_TIPG Tipo CRMTIPOS_CLAVE: Listas de Valores de Tipos de Claves Es! v
CODIGO_CLAVE Valores CRMVALORES_CLA Lista de Valores de Claves Estadisticas

VER_BAIAS Ver registros de baja
CON_EMAIL Con correo eledrénico STD_SI_NO_TODOLista de Valores - 5i / No / Todos T
NUMERO Nimero

(RIS
<

Clausula Where a induir en el filtro si la variable tiene valor

Cldusula Where Lista de Valores
where_lov AND tipo_entidad = 'C’ AND ultimo_nivel = 'S’ “ Tipo Valor Alfanumérico =
¥ Ejecutar Consulta al lanzar Ia Lista de Valores
v Validar desde Lista de Valores
¥ LV. Carga Registro Unico
. Tipo LV. Normal

| 3

Cédigo: Identificador de la variable, si en a condicion se uso6 :p_desde fecha, el codigo debe
de ser P DESDE FECHA.

Etiqueta: Texto que aparecera junto al campo al generarse la pantalla de filtros del usuario.
Lista de Valores: Cdodigo de la lista de valores que tendra el campo del filtro.

Valor por Defecto: Permite indicar un valor que aparecera inicialmente al usuario y que podra
ser modificado.

Obligatorio: Si se activa no se dejara realizar la consulta mientras el usuario no proporcione
un valor para el filtro.

Clausula Where a incluir en el filtro si la variable tiene valor: Esta cladusula where
unicamente sera afiadida cuando el usuario introduce algun valor en la variable y permite
simplificar la consulta, sobre todo cuando la lista de valores des de tipo multiseleccion. En
principio el contenido del filtro se afiadira al filtro principal afiadiendo al final: "AND (+ la
clausula where de la variable +)", pero puede ser que interese que esa condicion sea afiadida
a una parte en concreto de la where principal ya podria estar por ejemplo dentro de una
subconsulta, en ese caso en la where principal se anadira :CODIGO_VARIABLE y en el caso
de que el usuario no cubra ese filtro :CODIGO_VARIABLE se quita y si el usuario cubre el
filtro se reemplaza.

Clausula Where Lista de Valores: Filtro para los registros que visualizara la lista de valores.
Este campo esta asociado al campo “Lista de valores”. Toda lista de valores puede tener
asociada una clausula “WHERE” para todos los programas, pero esa “WHERE” quedara
anulada si en este campo se introduce una especifica, de forma que se puede llegar a tener
condiciones “WHERE” distintas en cada programa. Es muy recomendable afnadir la expresion
“:where lov” que se reemplazara en tiempo de ejecucion por la clausula where que tenga la
lista de valores, de forma que un cambio de la where en la lista de valores sera traslada a todos
los programas. Para hacer referencia en esta clausula where a otra variable que se pida antes
(que tenga un orden inferior) debe de usarse ":CODIGO_VARIABLE". No debe de usarse el

@M EDISA

campo interno usado, por ejemplo "BFILTROS.FILTRO_ALFA2" ya que si por algun motivo
se cambia el orden o se afiaden nuevas variables ese campo va a cambiar.

Tipo Valor: Permite indicar si el dato es “Alfanumérico”, “Numérico”, “Fecha” o de tipo
“Check”.

Ejecutar Consulta al lanzar la Lista de Valores: Si se indica “Lista de Valores” y se
desactiva esta check al lanzar la lista de valores se iniciara en modo de entrada consulta, es
decir, se inicia esperando que el usuario proporcione un filtro inicial.

Validar desde Lista de Valores: Si se indica “Lista de Valores” y esta check esta activa,
unicamente se podra introducir un valor de los que se puedan visualizar en la lista de valores.
Tipo L.V.: Si el filtro tiene lista de valores permite indicar el tipo de lista de valores a utilizar.
Si se indica un tipo de multiseleccion en la cldusula where del filtro hay que usar el operador
IN o NOT IN. Si se selecciona la opcion "Rellenar List-Item" el campo se mostrara en forma
de List-Item con los valores que devuelva la lista de valores cargados.

Mediante el desplegable “Accién a realizar sobre la lista de valores después de aplicar el filtro”, se
puede indicar:

Ejecutar Consulta: Una vez el usuario selecciona el filtro se ejecutard consulta en la lista de
valores mostrando los registros que cumplan la condicién del filtro.

Activar el Modo de Entrada Consulta: En vez de consultar los registros, el bloque de la lista de
valores se limpiara y se pondra en modo de entrada consulta para que el usuario pueda filtrar mas
en base a aplicar patrones de biisqueda sobre los campos visibles, una vez indicados los patrones
de busqueda puede pulsar en el botoén “Ejecutar Consulta” o F8 para mostrar los registros que
cumplan la condicion de busqueda.

Plug-ins en listas de valores

Para versiones de Libra 6.2.1 o superiores existe la posibilidad de que las listas de valores tengan plug-ins
forma similar a los plug-ins de los programas. Para ello se dispone de la pestafia "Plug-in" en donde se
pueden configurar. El nimero maximo de plug-ins que puede tener una lista son 5.

Ejemplos de uso:

26

Visualizar la foto de articulos.

Llamar a un programa con detalle de informacion del registro de la lista de valores.

En el control de fuentes permitira abrir los metadatos del archivo o un programa con la historia de
cambios.

Archive Opciones Edicion Desplazamiento Consulta Ventana Ayuda

14 < » pl X1 + B ® i E® H X L

L™ Listas de valores. L
Listas de Valores Opiones Avanzadas Observaciones Filros Plug-in

. Codigo CLIENTES_GESTION Descripcion Lista de Valores de Clientes.

Esperar a que termine el Programa Llamado
Permitir grabar en programa llamado

Es Ventana Modal
Cadigo Descripdon Programa Liamada [Tcono Plantilla ID Orden
02 Vista 360 del cliente consgen “ @ coins_in_hand 24
03 Ficha diente dientes v atlery -
Campo Control Activacidn Operacion Valor
Modo Menti Reemplazar = Modo Consulta No Solo Consulta = Sistema de Auterizacion Desautorizacién
Parimetro Valor Parametro Gadigo PI/Sal
TIPO_PARAMETRO ‘CLI_CODIGO' - -
VALOR_PARAMETRO LOV_STD.CI

Descripdén
Campa para realizar la b squeda. Del bloque B1 cualquier campo que comience por ~
CLI (dientes), PROV (para proveedores), ART (art culos), CRM (entidades GRM)

« Ejecutar en vez del programa

@M EDISA

Para obtener informacion de como configurar un plug-in, el funcionamiento es similar a la funcionalidad
de los plug-ins de los bloques del mantenimiento de programas. Ver el apartado Plug-ins para mas
informacion.

Las diferencias con los plug-ins de bloques de programas son las siguientes:

e No se les puede asignar una tecla rapida.

e No se pueden asignar al menu contextual de boton derecho del raton.

e Tiene la opcion “Es Ventana Modal” que no esta disponible en los bloques.

e En caso de indicar un Cédigo PL/SQL tnicamente se puede ejecutar sobre el registro en el que se
encuentra el cursor.

Es Ventana Modal: Esta check es muy importante al llamar a un programa para darle informacion al
entorno del tipo de programa al que se llama, si se indica que es “Ventana Modal” no hace falta que se
cierre la lista de valores antes de llamar al programa, ya que el programa al ser modal que dara por encima
de la propia lista de valores, pero si se llama a un programa que no se ejecuta en una ventana modal y se
activa esta check, Libra se quedara bloqueado ya que quedara la lista de valores por encima del programa
y el usuario no podra interactuar con ninguno de los dos programas.

Cédigo Nombre Razdn Sodial
TEST 2 TEST2 -
0000 EMPRESA EMPRESA
00001 SAMSUNG ELECTRONICS, S.A N SAMSUNG ELECTRONICS, S.A
0001 CONSTRUCCIONES LOECHE, S.L.W CONSTRUCCIONES LOECHE, S.L.
0001LC LIMITE CREDITOE CONSTRUCCIONES LOECHE, S.L.
0001RC RETENCION CUQTA RETENCION CUOTA
0002 Juan Jose Rodriguez Paz DISTRIBUCIONES JUJO
0004 SUMINISTROS INDUSTRIALES GALLARDON,S.A. SUMINISTROS INDUSTRIALES GALLARDON,S.A.
0004Vv2 PRUEBA DE TIPO FACTURACION PRUEBA DE TIPO FACTURACION
0004V3 VENITO FERNANDEZ VENITO FERNANDEZ]
0004v4 BENITO FERNANDEZ BENITO FERNANDEZ
0004v7 ELIAS FERNANDEZ MENDEZ ELIAS FERNANDEZ MENDEZ
0004v8 PRUEBA VIGO PRUEBA
0005 COMPARI{A PETROLIFERA ITALIANO, S.A. COPINA LTDA.
0006 EDISA MADRID, S.A. EDISA MADRID, S.A.
0007 JONH WHETER WHITE JONH WHETER WHITE
0008 MATERITALES DE CONSTRUCCION GARCIA, S.L. MATERIALES DE CONSTRUCCION GARCIA, S.L.
0009 CONSTRUCCIONES SAN MARCOS, S.L. CONSTRUCCIONES SAN MARCOS, S.L.
0010 COOPERATIVA EL GALEON, S.A. COOPERATIVA EL GALEON, S.A.
0011 AFAMSA - PUNTO VERDE ACTIVOS FIJOS, S.A.
0012 VENDAL, S.L. - benito VENTAS POR CATALOGO DEL CENTRO, S.L.
0013 MATERIAS CONSTRUCAQ JOAQUIM ALMEIDA,LDA MATERIAS CONSTRUCAQ JOAQUIM ALMEIDA,LDA -
& @[] < <> bl e Eer

Vista 360 del cliente

Mejoras de busquedas contextuales

Se puede mejorar la busqueda contextual, haciendo que busque por el sonido de la pronunciacion de una
palabra. Por ejemplo, busquedas independientes de si una palabra se escribe con B o con V, etc.

Para activar este tipo de blisquedas contextuales en una lista de valores hay que cubrir en la pestafia de
“Opciones avanzadas” los campos “Atributo 1 para TRANSLATE de bisqueda contextual” y “Atributo 2
para TRANSLATE de busqueda contextual”. Lo que especifiquemos en el atributol lo sustituira letra a
letra por el del atributo2, por ejemplo, si en el atributol ponemos VYS y en atributo 2 ponemos BIX, la V
la sustituira en la busqueda por B, la Y la sustituird por [y la S por la X.

(Sl Listas de valores

Listas de Valores Opciones Avanzadas Observaciones

-
o Codigo ARTICULOS Descripci6n Lista
(1 Argumento 1 para TRANSLATE de bisqueda contextual VYS A
. Argumento 2 para TRANSLATE de bisqueda contextual BIX

Parametro envio codigo de LV al llamar programa |

27

@M EDISA

Envio del contenido de una lista de valores a Hoja de Célculo.

En la pestafia “Opciones Avanzadas” existe la check “Activar Enviar a Excel” que si esta activada permite
al usuario que envie el contenido que esta viendo en la lista de valores a Excel

Para que se active la Excel el usuario debe tener activado que puede enviar datos de pantalla a Excel en el
programa de personalizar estética.

Posicionado de una lista de valores en Pantalla

Por norma general una lista de valores se centrara en la pantalla del programa que la llama. Si el puesto que
estd ejecutando el programa estd marcado como de tipo “Pocket” la lista de valores se posicionara en la
posicion 0,0. En el caso de que una determinada lista de valores se quiera posicionar en un area especifica
de la pantalla se pueden indicar las coordenadas mediante los campos “Posicion X y “Posicion Y.

Consulta para obtener la descripcién

La lista de valores puede contener la consulta que deben de ejecutar los programas para obtener la
descripcion a mostrar en los programas. En el campo ‘“Nombre Columna Consulta Descripcion” se
introducira la consulta necesaria para calcular la descripcion. Debido a que en este punto no se conocen los
campos con los que tiene que enlazar de la tabla del programa hay que utilizar variables entre los comodines

{-

Ejemplo: (SELECT f.descripcion FROM crmfamilias lin f WHERE f.codigo={codigo estad4} AND
f.numero=4 AND f.tipo='X' AND f.empresa={empresa})

En el programa hay que enlazar las variables {codigo _estad4}y {empresa} con los campos correspondiente,
por ejemplo “crmexpedientes _cab.codigo _estad4” y “crmexpedientes _cab.empresa”. La forma de realizar
este enlace se explica en el apartado Campos de visualizacion de descripciones.

Listas de valores con valores estaticos

Se pueden crear listas de valores que lleven los registros a mostrar incorporados en la propia lista, para lelo,
hay que la check "Utilizar Valores Fijos" y aparecera una pestafia donde indicar los valores posibles de la
lista de valores para cada una de sus columnas.

En este tipo de lista de valores no se podra modificar la consulta SQL ni la Clausula Where, para ello esos
campos se deshabilitan.

0 e

@ Cocenss Edicdn Qesplaz=mienty Cors
] = | B

~ atoma

Coraia S Gl W e ke

Diactrvar Totabeaciie on stas de Vakores di altsleccion Totakeadas
Srchaen ocizt Dismueds Contertual -
Ao i l

' ~ Jimma

I e A Dempen 3 1" Descripedn Colurmns ca 1ioens itmma Codge Desrpcin

orden.
Hotal Tipo Orden| Descripciin Columna,
e 4w cae

Tndependionte de Haplsculs | Hindsculss Seainlasio

g

Repizve 414

28

@M EDISA

Listas de Valores por grupos.

Son un tipo de listas de valores que muestran los registros en grupos de 9 en 9 6 de 5 en cinco y se puede
seleccionar el registro que se quiere pulsando un niimero entre 1 y 9 6 1 y 5 dependiendo del tipo. Ejemplo:

ista de Valores de Articulos
Cédigo Descripcion

1 | poooooo PLACA POLIESTER
2 |pooooooz HARIMA SELECTA COAL
3 | 000000z9 CAJA BOTELLAS AMANDI LAR
4 | 00000090 PLACA BASE PEMIUM IV PRO
5 | 00000091 DISQUETERA 3 1/5 %
G | 000002 MESA ACERO 20%10 MOD. 8383
7 |Doooo3 TUBO ACEROD 10MM
3 | 000004 TUBD ACERO 20 MM
S | 000005 AMGULO 10 MM, ACEROD
& |l & |

Para activarlas hay que meter en el fuente el componente “LISTA_VALORES GRUPO” de la libreria de
objetos y en el mantenimiento de programas o programas personalizados indicar el tipo de lista de valores
por grupo en el desplegable “Tipo Lista Valores” en la pestafia “Campo”.

L_CEMNITRO_CUNIABLE |
Calendario Mo -
validar desde LV. Si ~ [SelecgGrupos de 9 registros
Nombre Columna Consulta ﬁn:tFDsI a8 5 registros
Multiseleccion
Mombre Columna Orden) _, X M:
. . Multiseleccion Totalizada
Cadigo Plfsql de validacidn n Cal

Rellenar List-tem
Autocompletado (s0lo web)

Listas de valores en modo Entrada Consulta

Cuando se esta en el modo de entrada consulta de un bloque y se lanza la lista de valores tnicamente se
esta aplicando la clausula where definida en la lista de valores siendo ignorada la where indicada en el
campo. Esto es debido a que en modo entrada consulta no hay ningln tipo de validacion y por lo tanto se
puede ir a un campo en donde la where filtra por campos anteriores y al estar estos a NULL nunca mostraria
nada.

Se puede desactivar a nivel de empresa / usuario

eoce LIBRA DESARROLLO ELIAS - v6.1.0.6.3.8

Archivo Edicién Desplazamiento Consulta Ventana Ayuda

14 <4 » bl BN+ 8@ 4 E R X 2B
M Personalizar estética empresa =]
Configuracién de la Empresa Avanzada Informes

C i6 i - Reestablecer Colores
Campos de Texto Registro Actual Lista Valores Automatica donde sea posible
Color de Fondo ... Color de Fondo ... v "im Valores Contextu?I donde sea ?osibla
Fuente ... Fuente ... =2 = = =
Color de la Fuente ... Color de la Fuente ... extual donde sea posibie
Muestra Tahoma Muesra Tahoma Campos de Texto Funcionamiento por defecto v
Campe dalVism jzmcian Entrada de Consultas I Activar Enviar a Hoja de Célculo donde esté permitido

I Activar Enviar a Grafico donde esté permitido

Color de Fondo ... Color de Fondo ... ¥ Seleccién de campos a enviar a Hoja de Calculo

¥ Solicitar nombre de archivo al enviar a Hoja de Calculo
¥ Cambio visual de Item Actual

Fuente ... Fuente ...

29

@M EDISA

También se puede deshabilitar a nivel de lista de valores:

L] ® LIBRA DESARROLLO ELIAS - v6.1.0.6.3.8

Archivo Opciones Edicion Desplazamiento Consulta Ventana Ayuda

I« <4 » Pl E 4+ 08 rd E A X 2B

™ Listas de valores L]
Listas de Valores ~ Opciones Avanzadas Observaciones

& Codigo TIPOS_PEDIDO Descripcion Lista de Valores de Tipos de Pedido
1 Argumento 1 para TRANSLATE de bisqueda contextual Activar en Modo Entrada Consulta Seguin Usuario / Empresa
B Argumento 2 para TRANSLATE de biisqueda contextual Activar Enviar a Excel
Parametro envio codigo de LV al llamar programa CEy
Cédigo PI/Sql de Prevalidacién Posicién X
- Posicién Y
Tipo Where Validacion Principal -
Etiqueta Boton Where Defecto
Etiqueta Botdn Where Defecto 2
Clausula Where por Defecto 2
-
.
Donde:

e Segun Usuario / Empresa: Asumira la parametrizacion por Usuario / Empresa.
e Si: Se permite siempre independientemente de lo que esté parametrizado por Usuario / Empresa.
e No: Nunca se permite, independientemente de lo que esté parametrizado por Usuario / Empresa.

También a nivel de campo se puede indicar la cldusula where a aplicar en el caso de estar en modo entrada
consulta. En esta clausula where ya se podria controlar si los campos anteriores tienen valor o no para filtrar
por ellos o0 no seglin se quiera. Si se filtra por un bloque padre no hay necesidad de hacer ese tipo de control
ya que Forms entra en modo entrada consulta por bloque y no a nivel de programa completo. Por ejemplo,
en el campo TIPO_PEDIDO del programa PEDIDOS se podria meter la siguiente where: ":where_lov AND
(organizacion_comercial = :bl.organizacion_comercial OR :bl.organizacion_comercial IS NULL)" de
forma que si el usuario indicé una organizacidon comercial se filtrard por ella y en caso de que vaya
directamente al campo tipo de pedido se mostraran todos los tipos de pedido independientemente de la
organizacion comercial a la que pertenezcan.

e0ce LIBRA DESARROLLO ELIAS - v6.1.0.6.3.8

Archivo Opciones Edicion Desplazamiento Consulta Ventana Ayuda

4 <4 » pl DERL Al - v HI X @ B
M Programas T
Programas ~ Campo Blogue Avanzadas de Programa Plug-in Pestafias Ventanas Pardmetros Plug-in Informes Botonera Historia

Programa PEDIDOS Entrada de pedidos de venta

Bloque B1 Cabecera del pedido Campo TIPO_PEDIDO
[Forzar Filtro al Ejecutar Consulta Campo Anterior Posicién X Ancho

= C Campo Siguiente Posicion Y Alto

[Desactivar Lista de Valores Automatica o,
Cindepend; de P / Mini Grupo Validacién
I Bloquear validacién sin pulsar INTRO / TABULACION Control Caracteres
| Desactivar edicion de campo con doble click

[Imagen
Cédigo PI/Sql de Pre-Validacién ¥ Ejecutar Tipo Where Validacién
“ Seg(in Lista de Valores ~ Borde Prompt. -
Etiqueta Boton Where Defecto Alineamiento Prompt -
Etiqueta Botin Where 2 Desplazamiento sobre Borde
o Desplazamiento sobre Alineamiento
Cédigo PI/Sql de Pre-ejecucién de lista de valores Clusula Where por Defecto 2 Mayisculas / Miniisoulas
al a -
Idioma Etiqueta por Idioma
N
~ -
Cédigo PI/Sql de Doble Click Clausula Where para Validacion
al a
v
Etiqueta Boton
ha ~ Tooltip
Cédigo PI/Sql pulsacién INTRO / TABULACION Clausula Where en modo Entrada Consulta Thdicacién
+ fwhere_lov AND (organizacion_comerial = :b1. B
izacion_(jal OR :b1 izacion_(jal IS Wamar Programa
NULL) Htiqueta Boton
e Tooltip
¥ Sélo en campos invalidos ~ Ihdicacion

30

@M EDISA

Funciones para gestion de la Lista de Valores

Todas estas funciones estdn implementadas en el paquete LV

o LV.ACTIVA(<lista de valores>, <ejecutar consulta> [,clausula where], [consulta sql]): Se
llama cada vez que se llega a un campo con lista de valores, para habilitar el boton y el ment
correspondiente. En este paso ya se indica la lista de valores asociada al campo, si se ejecuta
automaticamente consulta al ejecutarla o si tiene una clausula WHERE especifica.

o <lista de valores>: Codigo de la lista de valores.
o <ejecutar consulta>: Hay dos opciones posibles:
= S: Cuando se lanza la lista de valores se ejecuta consulta automaticamente.
= N: No se ejecuta la consulta y se queda en modo de entrada consulta.
o [clausula WHERE]: Este parametro es opcional, si no se especifica se asume que dejamos
que la lista de valores use la clausula WHERE por defecto.
o [Consulta sql]: Este parametro también es opcional, si no se especifica asume que
dejamos la sql que tiene la lista de valores.

o LV.DESACTIVA: Deshabilita opcion de mend, iconos, ...

o LV.LLAMADA: Ejecuta la lista de valores, configura la ventana con los campos necesarios,
construye la sentencia SQL, se la asigna al bloque, ...

o LV.ROW_ID: Si el usuario seleccion6 una fila esta funciéon nos devuelve el rowid de la fila
seleccionada, si el usuario canceld la lista de valores devolvera NULL.

o LV.VIENE_DE_LISTA: Devolvera un dato de tipo BOLEAN, con el valor TRUE si desde
que entramos en el campo se ha ejecutado la lista de valores, en caso contrario devolvera
FALSE.

o LV.ESTABLECER BOTON_LISTA: La llamada a este procedimiento es opcional. Ver

“Indicar el botén de llamada a la lista de valores™.

Indicar el botén de llamada a la lista de valores

Hay casos, como por ejemplo en ventanas flotantes, en los que el botdn que tiene que pulsar el usuario es
un boton que se encuentra en la ventana flotante en vez del boton de la botonera principal.

Para indicar el boton que ejecutara la lista de valores se usara
LV.ESTABLECER _BOTON_LISTA('<bloque>.<botén>); antes de la llamada a
DISPSTD.WHEN _NEW_ITEM_INSTANCE, por lo que en los bloques en que suceda este caso habra
que personalizar el disparador WHEN-NEW-ITEM-INSTANCE.

Ejemplo: Si tenemos un botén que lanza la lista de valores en el bloque B8 y el nombre del boton es
LISTA VALORES, personalizaremos en el bloque B8 el disparador WHEN-NEW-ITEM-INSTANCE con
el siguiente codigo:

LV.ESTABLECER _BOTON_LISTA('B8.LISTA VALORES');
DISPSTD.WHEN NEW_ITEM INSTANCE;

Un boton que se utilice para llamar a una lista de valores debe tener las siguientes propiedades:

e Activado: No
e Teclado de Navegacion: No
e Navegacion del Ratén: No

Disparadores

Solo se deberan de usar la llamada fija a la lista de valores en el programa en casos muy excepcionales,
donde por cualquier motivo no sea efectiva la definicion para el campo de la lista de valores en el
mantenimiento de programas.

Trataremos de definir todos los disparadores a nivel de bloque en vez de a nivel de item, y usaremos la
variable :system.trigger_item para saber a qué item nos estamos refiriendo. Esto nos da muchas mas
posibilidades para poder afiadir codigo genérico y facilita enormemente la depuracion.

31

@M EDISA

WHEN_NEW_ITEM_INSTANCE

Para indicar de forma fija la lista de valores que va a usar un item usaremos el procedimiento LV.ACTIVA
(Se puede ver la definicion en la seccidon Funciones para gestion de la lista de valores). Siempre que sea
posible definir la lista de valores en el mantenimiento de programas se indicara ahi la lista de valores a usar.

DISPSTD.WHEN_ NEW_ITEM INSTANCE;

IF :system.trigger_item = 'CAMPOS.ESTADO' THEN
LV.ACTIVA('ESTADOS', 'S');

ELSIF :system.trigger_item = 'CAMPOS.PROVINCIA THEN
LV.ACTIVA('PROVINCIAS', 'S', 'estado = campos.estado');

END IF;

ATENCION: Nunca deberiamos de cerrar la posibilidad de que para campos que no tengan actualmente
lista de valores se le pueda asignar una desde el mantenimiento de programas, para eso es imprescindible
ejecutar el procedimiento estandar DISPSTD.WHEN NEW ITEM INSTANCE. Deberemos ejecutarlo
antes que los LV.ACTIVA para que el disparador estandar no cambie la activacion de la lista de valores.

WHEN-VALIDATE-ITEM

DISPSTD.WHEN_ VALIDATE ITEM;

IF :system.trigger_item = 'CAMPOS.ESTADO' THEN
IF :campos.estado IS NOT NULL THEN
BEGIN

SELECT nombre
INTO :campos.d_estado
FROM estados
WHERE codigo = :campos.estado;
EXCEPTION
WHEN NO_DATA FOUND THEN
:campos.d_estado := NULL;
MSG.MENSAJE ('CAMPO', 'NO _VALID');
END;
ELSE
:campos.d_estado := NULL;
END IF;
END IF;

Al igual que en WHEN NEW _ITEM INSTANCE no se deberia de anular la posibilidad de usar el
mantenimiento de programas para realizar la validacion de otros campos. Podriamos desde el
mantenimiento de programas asignar la lista de valores, pero desactivar la opcion de validar desde lista y
dejar fijo el codigo de validacion en el fuente del programa. También se podria usar la validacion de la lista
de valores y luego en el codigo fuente del programa afiadir una restricciéon a mayores, etc.

32

@M EDISA

Listas de valores de Multiseleccion

Las listas de valores de multiseleccion se diferencian de las listas de valores normales en que el usuario
puede seleccionar varios registros de la lista. En este tipo de lista de valores aparece un campo de tipo check
para que el usuario marque las filas que quiere seleccionar.

M) Lista de Valores de Estados
Codigo MNombre Seleccionado
580 MARIANAS DEL NORTE ['y
AFGA AFGANISTAN
AFRI AFRICA DEL SUR y
ALBA ALBAMIA v
ALEM ALEMANIA
ANDO ANDORRA
ANGO AMNGOLA
ANTA ANTARTIDA W
ANTI ANTIGUA Y BARBUDA
ARAB ARAEIA SALDI
ARGE ARGENTINA
ARGL ARGELIA
ARME ARMENIA
AUS ALSTRIA
AUST ALSTRALIA
AZER AZEREAYAMN
BAHA BAHAMAS
BAHR BAHREIM
BANG BANGLADESH
BARE BARBADOS
BELG BELGICA
BEMI BENIMN -
@ [22]8: M| 4] p] M |G &« N

Para activar la multiseleccion hay que indicar en la pestafia Campo en el campo “Tipo Lista Valores” una
de estas opciones:

Multiseleccion:
Multiseleccion Totalizada: Se diferencia de la anterior de que las columnas numéricas se les
afiade un total en donde se suman los registros que ha seleccionado el usuario.

Cuando se indica en el campo que es una lista de valores de multiseleccion aparecen 2 campos nuevos:

33

[T

Separador: Caracter que se utiliza para separar los valores, si no se indica nada se asume “,
(coma). En caso de poner el codigo de separador R, asumira que tiene que devolver el valor
en registros nuevos, es decir, en vez de concatenarlos en el campo que se llama a la lista de
valores, por cada valor seleccionado creara un registro nuevo. Es importante que en caso de
usar esta opcion el campo que tiene la lista de valores sea el unico campo obligatorio y si hay
campos obligatorios se carguen por cédigo PL/SQL de validacion de registro o del campo que
tiene la lista de valores, en caso de dar un error de validacion se cancelara en ese momento y
no se crearan mas registros.

Devolver Valores: Si se activa, cuando el usuario valida la lista de valores los cddigos de los
registros seleccionados se devuelven concatenados y separados por el caracter indicado en
“Separador”.

@M EDISA

e0ce LIBRA DESARROLLO ELIAS - v6.0.7.6.3.5
Archivo Opciones Edicién Desplazamiento Consulta Ventana Ayuda
. PY 4
4 € > pl] + B ® y R X @ ®
M Programas
Programas ~ Campo Bloque Avanzadas de Programa Plug-in Pestafias Ventanas Pardmetros Plug-in Informes Botonera Historia
- Plantillas 12/07/2019 13:02:39 1
Programa INMOVIL Descripcién Mantenimiento de Inmovilizados Cédigo Tipo Sin Definir A
Bloque Descripcion Grafico Excel Seleccion de campos
Bl Blogue inmovilizado “ Nunca - Nunca ~ Segiin Usuario -
B2 Bloque IWE" Cadigo Pl/Sql en sustitucién de la generacién XLS genérica
B3 Bloque Libros
B4 Blogue Revaloracion
BS Asociar Asientos de Compra
B6 Blogue Avaluos - -
Campo Etiqueta Estandar Lista de Valores Calculadora | gbligar Desactivar Modificacion
CANTIDAD Cantidad v « [Ocultar Desactivar Navegacién
CENTRO_CONTABLE Centro Contable CARACTERES_ASIENTO Deshabilitar Validacién Filtro
CENTRO_VISUAL CENTROS_COSTE .) ¥ Eiecutar Consulta
CENTRO_VISUAL_SEG CENTROS_COSTE Clausula Where Lista de Valores) R
CLAVE_ESTAD1 VALORES_CLAVES_INMOVILIZADO
CLAVE_ESTAD10 VALORES_CLAVES_INMOVILIZADO
CLAVE_ESTAD2 VALORES_CLAVES_INMOVILIZADO
CLAVE_ESTAD3 VALORES_CLAVES_INMOVILIZADO
CLAVE_ESTAD4 VALORES_CLAVES_INMOVILIZADO
CLAVE_ESTADS VALORES_CLAVES_INMOVILIZADO
CLAVE_ESTAD6 VALORES_CLAVES_INMOVILIZADO
CLAVE_ESTAD7 VALORES_CLAVES_INMOVILIZADO
CLAVE_ESTADS VA JRMOMILTZADO, v
Calendario No Tipo L.V. Mulhseleccmn - V. Carga Registro Unico No -
Validar desde L.V. si Devolver Valores Separador ista de Valores Lista de Valores de Centros Contables
Nombre Columna Consulta Tamafio Maximo
Nombre Columna Orden Descendente Excel Si ~ Mascara
Codigo PI/Sql de Validacién Bloquear salto de campo en L.V. Cédigo PI/Sql de Entrada en Campo Valor por Defecto
- a

Observaciones para el caso de activar la lista de valores en el mantenimiento de programas:

Si el campo que llama a la lista de valores de multiseleccion, es validado desde lista de valores,
los valores introducidos manualmente también seran validados y unicamente, si todos los
valores son validos se deja salir del campo.

Si se valida desde lista de valores y el campo tiene asociado un campo descripcion “D_XXX”
en ese campo se meteran las descripciones de los valores y se utilizara el mismo separador.
Si se valida desde lista de valores al llamar a la lista de valores desde un campo que ya tiene
algun valor se marcaran las checks de los registros correspondientes.

No se va a permitir seleccionar mas valores de los que pueden entrar en el campo que llama a
la lista de valores.

Las listas de valores también se pueden gestionar por codigo dentro del programa para ello se dispone de
las siguientes funciones y procedimientos:

Procedimiento para activar una lista de multiseleccion.

LV.ACTIVAR_MULTISELECCION: Modifica el funcionamiento de la proxima lista de
valores que se active para que esta sea de multiseleccion. Esta llamada se pondra antes de
DISPSTD.WHEN NEW ITEM INSTANCE.

Funciones para procesar los registros seleccionados por el usuario.

34

LV.PRIMER_REG_MULTISELECCION: Devuelve el rowid del primer registro
seleccionado por el usuario, si no ha seleccionado ninguno devolverd NULL.
LV.SIGUIENTE_REG_MULTISELECCION: Devuelve el rowid del siguiente registro
seleccionado por el usuario al anterior que nos ha devuelto esta funcion o la funcion
PRIMER_REG_MULTISELECCION. Si ya no quedan mas registros devolvera NULL.
LV.BORRAR_MULTISELECCION: Borra toda la seleccion realizada por el usuario.
LV.CAMPO_LOV: Devuelve el campo desde el que se ha llamado la lista de valores.

@M EDISA

Ejemplo de lista de valores de multiseleccion.

o WHEN-NEW-ITEM-INSTANCE: Hay dos formas de indicar que un campo tiene lista de
valores de multiseleccion

o Activamos la lista de valores en el codigo del programa, por ejemplo.

DISPSTD.WHEN_NEW_ITEM INSTANCE.

IF :system.trigger item = 'PRUEBA.CODIGO' THEN
LV.ACTIVAR MULTISELECCION;
LV.ACTIVA('ESTADOS', 'S');

END IF;

o Lalista de valores se establece en el mantenimiento de programas (siempre que se pueda
trataremos de usar este método), en el codigo solo indicamos que es de multiseleccion,
por ejemplo:

DISPSTD.WHEN NEW ITEM INSTANCE.

IF :system.trigger item = 'PRUEBA.CODIGO' THEN
LV.ACTIVAR MULTISELECCION;

END IF;

o WHEN-NEW-RECORD-INSTANCE: Procesamos la seleccion del usuario, solo cuando se
viene de la lista de valores del campo sin ser cancelada.

DECLARE
v_rowidVARCHAR2 (30) ;
BEGIN
DISPSTD.WHEN_ NEW_RECORD_INSTANCE;
IF lv.viene_de_lista AND lv.row_id IS NOT NULL
AND lv.campo_lov = 'PRUEBA.CODIGO' THEN
v_rowid := LV.PRIMER REG_MULTISELECCION;

WHILE v_rowid IS NOT NULL LOOP
SELECT codigo
INTO :prueba.codigo
FROM estados
WHERE rowid = v_rowid;

NEXT_RECORD;
v_rowid := LV.SIGUIENTE_ REG MULTISELECCION;
END LOOP;

LV.BORRAR MULTISELECCION;

END IF;
END;

35

@M EDISA

Aunque parezca un juego de palabras es la mejor descripcion para el Mantenimiento de Programas del

ece o LIBRA DESARROLLO ELIAS - v6.0.7.6.3.5 - -
Archivo Opciones Edicion Desplazamiento Consulta Ventana Ayuda
<« < > bl B+ B8 y. RIX olm
[=M Programas
Programas ~ Campo Blogue Avanzadas de Programa Plug-in Ventanas Pardmetros Plug-in Informes Botonera Historia
= “ Plantillas 16/07/2019 15:20:28 1
Programa SEE\I=S Descripcién Mantenimiento de Clientes Cédigo CAMPOS.CODIGO_RAPIITipo Sin Definir -
Bloque Descripcion Gréfico Excel Seleccion de campos
& BREPORT Parémetros del informe “ Nunca ~ Nunca ~ Seg(in Usuario -
BSEG Blogue Se.grr.»entns Cédigo PI/Sql en sustitucién de la generacién XLS genérica
. CAMPOS Bloque principal ™
LOGO Logo del cliente
Q
- v
campo Etiqueta Estandar Lista de Valores Calculadora o ligatorio Orden 1 Seccién 0
CODIGO_ADMIN_AEAT Pasar Navegaci6n Parametro
DESDE_AGENTE AGENTES
DESDE_CNAE CNAE z P “ Ejecutar Consulta
DESDE_CODIGO CLIENTES Clausula Where Lista de Valores] R
DESDE_DIRECCION DOMICILIOS_PAGO_CLIENTE
DESDE_ESTADO ESTADOS
DESDE_FORMA FORMAS_COBRO_PAGO
DESDE_PROVINCIA PROVINCIAS
HASTA_CODIGO CLIENTES
DIRECCION
HASTA_AGENTE AGENTES
HASTA_CNAE CNAE
HASTA_DIRECCION DOMICILIOS_PAGO_CLIENTE e -
Calendario No ~ Tipo LV. Normal ~ LV. Carga Registro Unico No v
Validar desde L.V. Si ~ [Seleccién Archivo ... Lista de Valores
Nombre Columna Consulta Tamafio Maximo
Nombre Columna Orden Descendente Excel Si ~ Mascara
Cédigo PI/Sq| de Validacién Bloquear salto de campo en L.V. Cédigo PI/Sql de Entrada en Campo Valor por Defecto
a a

Desde este programa se pueden realizar operaciones que pueden modificar el comportamiento de los
programas sin necesidad de modificar ni compilar, simplemente saliendo y volviendo a entrar en el
programa modificado ya se asumen los nuevos cambios.

NOTA: No es necesario introducir todos los campos de un bloque, inicamente aquellos que tengan la
necesidad de activar alguna funcionalidad en particular.

El valor de la check “Plantillas” a nivel de programa, “Campo Codigo” y el apartado Especificos Programas
Dinamicos de cada campo, son para uso exclusivo de programas que sean dinamicos (basados en plantillas).

Operaciones que se pueden realizar a nivel de programa

36

Tipo: Define la tipologia del programa:

o

Consulta: Es un programa de consulta, por tanto, algunas listas de valores cambian el
comportamiento de los registros a mostrar. Por ejemplo, en una consulta de articulos se
podran ver articulos inactivos, mientras que si es un movimiento de almacén los articulos
inactivos no pueden visualizarse.

Plug-In: El programa esta pensado exclusivamente para ser utilizado como plug-in, por
tanto, no es necesario que se encuentre en el menu del usuario para ser utilizado.

Web: Programa de movilidad.

Ejecuta Metadatos: No necesita ejecutable compilado para ejecutarse, con la
informaciéon que se encuentra definida a nivel de metadatos es suficiente para ser
ejecutado.

Plug-In Ejecuta Metadatos: Igual que “Ejecuta Metadatos” y no se requiere una entrada
en el menu para que el usuario pueda ejecutarlo.

Filtro Metadatos: Es un programa que no esta asociado a tabla y no necesita ejecutable.
Este programa permite pedir datos al usuario por pantalla para luego se utilizados por
algtin proceso.

Plug-In Filtro Ejecuta Metadatos: Igual que “Filtro Metadatos” y no se requiere una
entrada en el ment para que el usuario pueda ejecutarlo.

@M EDISA

37

Cédigo PL/SQL de Inicializacién: Solo se ejecuta al entrar en el programa, es interesante

para establecer propiedades que no se pueden cambiar de otra forma.

Cédigo PL/SQL de Finalizacion: Solo se ejecuta al salir del programa.

Permitir Informes por.... Mediante estas checks se puede configurar el destino que puede

tomar un informe, si se deshabilitan todas al entrar en el programa también se deshabilita el

botén de impresion.

Seleccion de Directorio en Informes: En la pantalla de seleccion de destino de la impresion,

si el usuario indica que desea el informe en archivo, el usuario puede indicar la ruta + el

nombre del archivo, si se activa esta check quiere decir que el nombre de archivo se genera
de forma automatica dentro del programa, por lo tanto, el usuario inicamente debe de indicar
el directorio en donde quiere obtener los archivos.

Grabar automaticamente al salir: Si se activa, cuando hay cambios que estan pendientes de

ser grabados, al pulsar el boton de salir esos cambios se graban automaticamente sin preguntar

al usuario.

Ejecutar Consulta al Entrar: Si se activa, en le primer bloque navegable del programa se

ejecutara consulta al entrar en él por primera vez. Esa consulta se ejecutara siempre y cuando

no se hubiese ejecutado ya consulta por la légica del programa en el disparador INICIO y que
el bloque tenga la propiedad de QUERY ALLOWED a TRUE.

Icono: Cuando el programa se utiliza como plug-in de otro se propone este icono para usarlo

como icono del plug-in.

Seleccion Manual de Plantilla Inicial: Unicamente es visible cuando el programa es

“dinamico”. Permite indicar que al entrar en el programa se debe de solicitar al usuario la

plantilla a usar en vez de aplicar de forma automatica la ultima plantilla que selecciono el

usuario.

Cédigo PL/SQL de grabacion: Este codigo se ejecuta cuando el usuario graba o sale del

programa grabando las modificaciones. No se ejecuta por cada registro, se ejecuta por cada

grabacion, por tanto, si queremos que el usuario grabe por registro para que se ejecute este
codigo hay que usarlo en conjunto con el bloqueo de salida hasta grabar a nivel de bloque.

Cédigo PL/SQL Boton Impresion: Se ejecuta cuando el usuario pulsa sobre el botén de

imprimir, y se puede indicar en qué punto exacto se ejecuta en la lista “Punto ejecucion

PL/SQL Botén Impresion™:

o Antes de navegar a la pantalla de Impresion: Es lo primero que ejecuta, antes de ir a
la pantalla de filtros de informe, de esta forma se podria anular esa pantalla y llamar a un
plug-in con otro frontal de informes distinto.

o Después de Navegar a la pantalla de Impresion: Se ejecuta después de mostrar la
pantalla de filtros de informes, después de poner los valores por defecto de destino,
impresora, ..., por lo que desde el codigo PL/SQL se pueden alterar.

o Antes y Después de Navegar a la pantalla de Impresion: Se ejecuta dos veces, una
antes de navegar y otra después, si se quiere que haga cosas distintas se puede usar la
variable :system.cursor_block, después de navegar contendra el valor BREPORT.

Si el programa no tiene informe y se activa mediante la check de Forzar Boton de Impresion

el especificar que se ejecute Antes o Después de Navegar va a dar el mismo resultado ya que

en ninglin momento va a hacer esa navegacion. Si se especifica que se ejecute Antes y Después
se va a ejecutar dos veces.

Cédigo PL/SQL para antes de ejecucion del informe: Se ejecuta cuando el usuario pulsa el

boton de imprimir en la pantalla de filtros del informe, una vez seleccionado el destino,

impresora, ... y se ejecuta justo antes de hacer la llamada al report, por lo que se podria usar
para hacer una carga de una tabla temporal, modificar la impresora por la que se va imprimir

o alterar el informe que se va a imprimir por ejemplo. Si se especifica prevalecera sobre el

codigo PL/SQL que tenga el usuario o la empresa.

@M EDISA

38

Se puede establecer que se ejecute cuando el usuario selecciona un determinado destino,
mediante los list-item que tiene debajo (Al ir a Pantalla, Impresora, Archivo, eMail, Fax y
Gestion Documental) y tienen los siguientes valores:

o Usuario: Se ejecuta dependiendo de la parametrizacion del usuario en “Personalizacion
de Estética” y si no tiene registro ahi segun la parametrizacion de “Personalizacion de
Estética por Empresa”, en caso de no haber tampoco registro se asume que Si se ejecuta.

o Si: Se ejecuta independientemente de si el usuario/empresa tiene que no se ejecuta.

o No: No se ejecuta independientemente de si el usuario/empresa tiene que no se ejecuta.

Como particularidades de este codigo PL/SQL es que se pueden leer las siguientes variables:

o PKPANTALLAS.GET _VARIABLE ENV_VARCHAR2('IMP_INFORME'):
Devuelve el nombre del informe que se va a ejecutar.

o PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('IMP_DESNAME"):
Devuelve a donde se enviara el informe, en caso de que el destino sea impresora,
devolvera el nombre de la impresora a la que se envia, en caso de ser alglin tipo de archivo
devolvera el nombre del archivo que se va a generar con la ruta completa.

o PKPANTALLAS.GET _VARIABLE ENV_VARCHAR2('IMP_DESTINO_EXCE
L'): Si se envia a Excel indica el nombre de archivo con la ruta completa que se va a
generar.

o PKPANTALLAS.GET VARIABLE ENV_VARCHAR2('IMP_REPORTS60 TM
P'): Valor de la variable REPORTS60_TMP del libra6.ini.

o PKPANTALLAS.GET_VARIABLE_ENV_VARCHAR2('IMP_DISPOSITIVO"):
Dispositivo de salida del informe, posibles valores SCREEN, PRINTER, FILE, MAIL,
FAX, GESTODOC.

Otras particularidades de este codigo PL/SQL es que se puede establecer la impresora o
el nombre del archivo a generar (dependiendo del destino del informe) estableciendo
PKPANTALLAS.SET VARIABLE ENV(IMP DESNAME', 'valor');, También se
puede cambiar el informe a ejecutar estableciendo
PKPANTALLAS.SET VARIABLE_ENV(IMP_INFORME/, 'valor');
Coédigo PL/SQL para después de ejecucion del informe: Se ejecuta una vez se ha finalizado
la ejecucion del informe, y al igual que en el en “Cddigo PL/SQL para antes de Ejecutar
Informe” se puede indicar que se ejecute cuando el destino sea uno en concreto. En este codigo
es especialmente importante ya que si se va a ejecutar invalida la impresion en segundo plano
en caso de estar activada.

Como particularidades de este codigo PL/SQL es que se pueden leer las siguientes variables:

o PKPANTALLAS.GET_VARIABLE ENV_VARCHAR2('IMP_INFORME"):
Devuelve el nombre del informe ejecutado.

o PKPANTALLAS.GET _VARIABLE _ENV_VARCHAR2('IMP_DESNAME'):
Devuelve a donde se mandoé el informe, en caso de que el destino sea impresora devolvera
el nombre de la impresora a la que se envio, en caso de ser algtin tipo de archivo devolvera
el nombre del archivo generado con la ruta completa.

o PKPANTALLAS.GET _VARIABLE ENV_VARCHAR2('IMP_DESTINO_EXCE
L"): Si se envia a Excel indica el nombre de archivo con la ruta completa que se genero.

Grupos de Repeticion: Los grupos de repeticion permiten definir campos que el usuario

debera teclear tantas veces como indique el campo “N°”. Luego a nivel de campo (en la

pestaiia campo), a los campos que se quieran incluir en el grupo de repeticion hay que cubrir
el campo “Grupo Validacion™.

o Cédigo: Cddigo del grupo de repeticion.

o Descripcion: Descripcion del grupo.

o N Numero de veces que el usuario tiene que introducir la informacion para validar el
grupo de repeticion.

@M EDISA

Operaciones que se pueden realizar a nivel de bloque

39

Cambiar el origen de datos del bloque para consulta, campo “Consulta”: En este campo
se puede indicar de donde tiene que obtener Oracle los datos para mostrar en el bloque. Puede
ser una tabla o una consulta. En caso de ser una consulta se debe de poner entre paréntesis.
Cambiar la condicién de visualizacion de registros de un bloque: A los bloques se les
puede afiadir una condicién a mayores de la que tiene el programa, para ello se cubrira el
campo Where Inicial de la seccion de bloques. La forma en que se introduce la condicion al
bloque depende del list-item “Operacion con Where Inicial”:
o Aiiadir: Se afiade la condicion a la que tenga el programa en el fuente.
o Sustituir: Se ignora la condicién que tenga el programa en el fuente y se utiliza
unicamente la del mantenimiento de programas.

Cambiar la ordenacién de un bloque: A los bloques se les puede modificar el tipo de
ordenacién que realiza, para ello se cubrird el campo Ordenacion Inicial. NOTA: Esta
ordenacion sustituye a la que tenga el programa. Si dentro del programa se vuelve a asignar
la propiedad ORDER_BY del bloque se perdera esta asignacion.
Tabla Relaciones: Por defecto se controla el borrado de registros o modificacion de campos
clave primaria en base a las relaciones asociadas a la tabla del bloque, pero puede haber casos
donde el bloque esta asociado a una vista, pero el control de las relaciones interesa gestionarlas
por las definidas en una tabla, en este caso se puede indicar en este campo la tabla con la que
se tienen que verificar las relaciones. Esta tabla también sera utilizada para gestionar las
auditorias de cambios. Al introducir una tabla en este campo se puede configurar los permisos
de visualizacion de esas auditorias, por lo general lo mas adecuado es dejar el valor por defecto
“Segun Usuario”.

Operacion con

“ Afadir

iltros
i - Bloque de D

Tabla Relaciones ~ USUARIOS

portacion a Hoja de Calculo Automatico
[Habilitar seleccion de registros

\asta grabar O campo al iar de reg
o CPrioridad mismo bloque en cambio de pestal

! [Desactivar Ct

M Registro de Cambios

s PI/Sql (1) Registro de Cambios

Control de Visualizacién de Cambios de Registro Segun Usuario -

Enviar a Excel el contenido del bloque: Si se activa en el bloque la opcion “Excel”, cuando

el cursor entre en ese bloque se activa en el ment una opcion para enviar el contenido

directamente a Excel.

o Segun Usuario: Solo se activara esta posibilidad si en la personalizacion del usuario tiene
activado el envio a hoja de calculo.

o Nunca: No se permite volcar el contenido de bloque a hoja de calculo
independientemente de la configuracion del usuario.

o Siempre: Se permite el volcado a hoja de calculo independientemente de la configuracion
del usuario.

Seleccion de campos a enviar a Excel: Permite configurar el comportamiento que tendra

cuando el usuario pulse el botdén de envio a hoja de calculo, pudiéndose indicar que no se

soliciten los campos a enviar a hoja de calculo, de forma que se envian todos.

Codigo PL/SQL en sustitucion de la generacion XLS genérica: Este codigo PL/SQL, en el

caso de introducirse, se ejecutard cuando el usuario pulse sobre el boton de envio a hoja de

calculo, pudiéndose meter las llamadas necesarias a PKXLSBD para realizar la hoja de calculo

de forma totalmente especifica para ese bloque.

Cédigo PL/SQL de validaciéon: Codigo PL/SQL que se ejecuta cuando se valida un registro

completo.

@M EDISA

40

Cédigo PL/SQL de Post Insercion: Se ejecuta después de haberse insertado el registro en la
base de datos.

Cédigo PL/SQL de Post Actualizacion: Se ejecuta después de haberse modificado el registro
en la base de datos.

Cédigo PL/SQL de Pre borrado: Se ejecuta cuando se intenta borrar un registro. Si el
resultado de la ejecucidn termina con :p_parar_ejecucion con el valor 'S' se evita el borrado
del registro.

Cédigo PL/SQL de Post Borrado: Se ejecuta una vez se ha borrado el registro.

Cédigo PL/SQL de inicializacion: Se ejecuta cada vez que se crea un registro, de esta forma
se puede asignar valores por defecto en base a determinadas condiciones. Se deberia utilizar
siempre y cuando el valor por defecto no se pueda asignar usando el campo “Valor por
defecto”, ya que el uso del campo “Valor por defecto” no hace intervenir a la base de datos.
Cédigo PL/SQL de Entrada en Bloque: Se ejecuta cuando el cursor entra en el bloque.
Cédigo PL/SQL de Entrada en Registro: Se ejecuta cada vez que se entra en un registro
nuevo o se cambia de registro en el bloque.

Cédigo PL/SQL — Antes de consultar registros: Se ejecuta antes de realizar la consulta que
realiza el bloque para rellenarlo de informacion.

Cédigo PL/SQL de Consulta de Registro: Codigo que se ejecuta por cada registro que se
consulta de la base de datos. IMPORTANTE: Al ejecutarse por cada registro que se trac de
la base de datos y al ejecutarse el codigo PL/SQL en la base de datos se va a incrementar el
trafico de red ralentizando la consulta.

Bloquear salida hasta grabar: Si se activa la check y el usuario modifica algo, este bloque
va a bloquear la salida del registro en que se encuentra el usuario hasta que no grabe o no lo
borre o borre el registro de un bloque padre.

Por ejemplo, si lo activamos en la entrada de pedidos en el bloque B1 (cabecera), en cuanto
el usuario modifique algo no se le va a dejar salir del pedido mientras no lo grabe o no lo
borre.

Si lo activamos para un bloque que tiene padres, por ejemplo, lineas de pedido, habria que
activarlo también para sus padres ya que si no lo hacemos evitamos que salga de las lineas,
pero puede ir a la cabecera y cambiarla lo que produce un cambio en las lineas.

Si se activa en un bloque multilinea y el usuario intenta salir con el ratén a otro registro se

navega de nuevo al registro en que estaba.

Prioridad mismo bloque en cambio de pestaiia: El funcionamiento normal de cuando el

usuario pulsa en una pestafia es buscar el primer campo navegable de la pestafia de destino,

ese campo podria ser de otro bloque. Si se activa esta check primero mira si en la pestafia de

destino hay un campo navegable del bloque en que se encuentra el cursor, si lo hay va a ese

campo y si no hay busca el primer campo navegable de la pestaiia de destino sea del bloque

que sea.

Mantener campo al cambiar de registro: Si se navega al registro anterior o al registro

siguiente se intentara mantener el cursor en el mismo campo. Si el registro al que se navega

es nuevo se ira al primer campo navegable.

Confirmar borrado de registro: Si estd activado antes de borrar un registro se pide

confirmacion al usuario, si no estd activado se borra directamente.

Modo Exportacion a Hoja de Calculo:

o Automitico: Dependiendo de los campos que desea exportar el usuario a Hoja de
Célculo, el entorno de Libra puede determinar que el mejor camino para realizarlo es
volver a ejecutar la misma consulta que hizo el bloque para rellenarse.

@M EDISA

41

o Forzar recorrer bloque: Esta opcion le indica al entorno que debe de recorrer el bloque
para obtener los datos para generar la hoja de calculo en vez de realizar otra consulta
contra la base de datos.

o Forzar conexién directa: Si el bloque no usa tablas temporales y paquetes con variables
de sesion y generalmente el numero de registros a exportar va a ser alto, con esta opcion
pude mejorar la velocidad de exportacion.

o Bloquear conexion directa: Debe de utilizarse en el caso de que el bloque esté asociado
a una tabla temporal o que utilice funciones que dependan de variables de sesion.

Biisqueda Contextual: En Forms 14 indica si se debe de habilitar o no la busqueda contextual

del bloque.

o Segun Usuario: El bloque permite la busqueda contextual, pero sera la parametrizacion
de grupo empresarial / usuario quien determine si se debe de activar o no.

o Siempre: Independientemente de la configuracion del grupo empresarial / usuario el
usuario podra ejecutar la busqueda contextual.

o Nunca: Independientemente de la configuracion del grupo empresarial / usuario el
usuario no podra ejecutar la bisqueda contextual.

Habilitar seleccion de registros: Esta check tnicamente debe de ser activada en caso de

bloques de tipo multiregistro. Permite al usuario a seleccionar con el raton (mientras mantiene

la tecla Control o Mayusculas pulsada) varios registros. Una vez seleccionados varios registros
se pueden borrar todos a la vez o lanzar un plug-in que se ejecute solo para los registros
seleccionados.

Filtros: Permite configurar el bloque para que gestione dos tipos de filtros:

o Si- Bloque de Filtro: Se utiliza para indicar que el bloque es donde se introducen los
filtros para luego ejecutar una consulta, al indicar esto el usuario puede grabar los filtros
utilizados para ser recuperados luego de forma facil.

o Si- Bloque de Datos: Se mostrara una pestafia anidada donde se pueden definir filtros
que luego podra seleccionar el usuario durante la ejecucion del programa.

Archivo Opciones Edicién Desplazamiento Consulta Ventana Ayuda

4« 4 » bl + €& _ = A »
M Programas

Programes Campo Boque | Avenzadas de Programa Pugin Ventanas Primebros Plug-n Informes Botoners Historia

Programa CLIENTES Mentenimiento de Clientes

Bloque carpos aoque princpal

Consulta Operacién con Where Inicial
codigo_ empresa = 1GLOBAL codigo_empress AND (/GLOBAL usuario = :GLOBAL (-cLoBAL ~ Aadic

Where Inicial superusuario AND (EXISTS (SELECT 1 FROM CLIENTES_PERMITIDOS WHERE EMPRESA= :GLOBAL CODIGO_EMPRESA AND USUARIO=:
GLOBAL USLIARTO ANE CLIENTE=va clientes.COBIGO RAPIDOY OR NOT EXTSTS (SELECT 1 FROM dientes. permitidos WHERE emoress = : ~ FILFOS

Orden Inical Tabla Relaciones Si - Blogue de Datos:

log de grabar o registro Modo Exportacién a Hoja de Cilcule Automitico
“ Confirmar borrade de registro Prioridad mismo blogue en cambio de pestafia Habilitar seleccién de registros

Cbdigos PI/Sal ()l Cédigos PI/Sql (I Filtros
Filtra Tnicial Selecdonar com filto inicial Borrar it nicial

Cadiga Descripcién Orden Activo
NAC Clientes Nacionaies 1.

NONAC Clientes Extranjeros 2 v
SINVTAS Sin ventas entre fechas R

Accién a realizar sobre el bloque después de aplicar el filtro cotar Consulta - [varities
Filtro Limpiar Blogue
NOT EXISTS (SELECT 1 FROM albaran_ventas v WHERE av.dientz = va_dientes.cocign_repido AND s, activar Modo ge Entrada Consulta p_desde fecha ~

AND :p_hasta_fecha

Se pueden definir tantos filtros como se quiera, el usuario cuando ejecute el programa y entre
en el bloque va a tener un boton para abrir una ventana en donde indicar el filtro que quiere
aplicar, y si tiene ya aplicado algun filtro una de las opciones sera “Limpiar Filtros” para
volver al estado original.

Se puede hacer que segun se entre en el programa arranque el bloque con un filtro aplicado,
para ello situamos el cursor en el registro que se quiera que sea inicial y se pulsa en el boton
“Seleccionar como filtro inicial”, para desactivar el filtro inicial se pulsara en el boton “Borrar
filtro inicial”. Un filtro que use variables no podra ser utilizado como filtro inicial.

Cédigo: Identificador tnico del filtro, no sera visible por el usuario.

@M EDISA

42

Descripcion: Sera lo que vea el usuario para identificar el filtro.

Orden: Orden en que se mostrara al usuario para seleccionar el filtro a aplicar.

Activo: El usuario solo podra seleccionar aquellos filtros que tengan la check “Activo”
marcada.

Accion a realizar sobre el bloque después de aplicar el filtro: Indica que es lo que se debe
de hacer sobre el bloque en el caso de que el usuario aplique un determinado filtro. Las
acciones que se pueden indicar son:

o

Ejecutar Consulta: Es lo que se hacia siempre hasta esta version y consiste en
refrescar la consulta del bloque con el filtro aplicado.

Ejecutar Consulta y no mantener bloque filtrado: Con esta opcion se hace la
consulta segun el filtro y se muestran los datos que cumplen la condicion, pero el
bloque no queda atado a ese filtro y si el usuario pulsa F7 o usa el boton de ejecutar
consulta vera todos los registros, es decir, es equivalente a la opcion "Ejecutar
Consulta" y luego que el usuario vaya a "Limpiar Filtros"

Limpiar Bloque: Se aplica el filtro y se limpia todos los registros visualizados, el
usuario tendra que ejecutar consulta para ver los registros.

Activar Modo de Entrada Consulta: El bloque se queda en modo de entrada
consulta esperando a que el usuario introduzca algun criterio a mayores a aplicar
sobre alguno de los campos.

Filtro: Sera la condicion que se afiada al bloque, esa condicion se afiade de la siguiente forma:

AND (<condicion>)

En el filtro se pueden utilizar variables que le seran solicitadas al usuario, esas
variables se introduciran directamente en la condicién afadiendo : (dos puntos)
delante, por ejemplo, si queremos al usuario un rango de fechas, se podria meter algo
similar a esto: av.empresa = :global.codigo _empresa AND av.fecha pedido
BETWEEN :p_desde fecha AND :p hasta_fecha. En este caso se indica que se
quieren usar las variables :p_desde fechay :p hasta fecha, a esas variables hay que
indicar la forma en la que se van a solicitar al usuario, para ello hay que pulsar en el
boton “Variables”.

'Variables del Filtro
Variables del Filtro
Cédigo Etiqueta Lista de Valores Valor por Defecs Orden Obligatorio
ODIGO_TIPO Tipo CRMTIPOS_CLAVE:Listas de Valores de Tipos de Claves Esf v

CODIGO_CLAVE Valores CRMVALORES_CLA Lista de Valores de Claves Estadisticas
VER_BAIAS Ver registros de baja

CON_EMAIL Con correo eledrénico STD_SI_NO_TODOLista de Valores - 57/ No / Todos T
NUMERO Nimero

[EUFSIPR,
<

Cldusula Where a incluir en ¢l filtro si la variable tiene valor

Cléusula Where Lista de Valores
where_lov AND tipo_entidad = 'C' AND ultimo_nivel = 'S' “ Tipo Valor Alfanumérico
“ Ejecutar Consulta al lanzar la Lista de Valores
“ Validar desde Lista de Valores
“LV. Carga Registro Unico
L TipoLV. Normal

Codigo: Identificador de la variable, si en a condicion se us6 :p_desde fecha, el cédigo debe
de ser P DESDE FECHA.

Etiqueta: Texto que aparecera junto al campo al generarse la pantalla de filtros del usuario.
Lista de Valores: Cdodigo de la lista de valores que tendra el campo del filtro.

Valor por Defecto: Permite indicar un valor que aparecerd inicialmente al usuario y que podra

ser modificado.

Obligatorio: Si se activa no se dejara realizar la consulta mientras el usuario no proporcione

un valor para el filtro.

@M EDISA

e Clausula Where a incluir en el filtro si la variable tiene valor: Esta clausula where

unicamente serad afiadida cuando el usuario introduce alglin valor en la variable y permite
simplificar la consulta, sobre todo cuando la lista de valores des de tipo multiseleccion. En
principio el contenido del filtro se afiadira al filtro principal afiadiendo al final: "AND (+ la
clausula where de la variable +)", pero puede ser que interese que esa condicion sea afiadida
a una parte en concreto de la where principal ya podria estar por ejemplo dentro de una
subconsulta, en ese caso en la where principal se afiadira :CODIGO_VARIABLE y en el caso
de que el usuario no cubra ese filtro :CODIGO_VARIABLE se quita y si el usuario cubre el
filtro se reemplaza.

e Clausula Where Lista de Valores: Filtro para los registros que visualizara la lista de valores.

Este campo esta asociado al campo “Lista de valores”. Toda lista de valores puede tener
asociada una clausula “WHERE” para todos los programas, pero esa “WHERE” quedara
anulada si en este campo se introduce una especifica, de forma que se puede llegar a tener
condiciones “WHERE?” distintas en cada programa. Es muy recomendable afiadir la expresion
“:where_lov” que se reemplazard en tiempo de ejecucion por la clausula where que tenga la
lista de valores, de forma que un cambio de la where en la lista de valores sera traslada a todos
los programas. Para hacer referencia en esta clausula where a otra variable que se pida antes
(que tenga un orden inferior) debe de usarse ":CODIGO_VARIABLE". No debe de usarse el
campo interno usado, por ejemplo "BFILTROS.FILTRO_ALFA2" ya que si por algun motivo
se cambia el orden o se afiaden nuevas variables ese campo va a cambiar.

e Tipo Valor: Permite indicar si el dato es “Alfanumérico”, “Numérico”, “Fecha” o de tipo

“Check”.

e Ejecutar Consulta al lanzar la Lista de Valores: Si se indica “Lista de Valores” y se

desactiva esta check al lanzar la lista de valores se iniciard en modo de entrada consulta, es
decir, se inicia esperando que el usuario proporcione un filtro inicial.

e Validar desde Lista de Valores: Si se indica “Lista de Valores” y esta check esta activa,

unicamente se podra introducir un valor de los que se puedan visualizar en la lista de valores.

o Tipo L.V.: Si el filtro tiene lista de valores permite indicar el tipo de lista de valores a utilizar.
Si se indica un tipo de multiseleccion en la clausula where del filtro hay que usar el operador
IN o NOT IN. Si se selecciona la opcion "Rellenar List-Item" el campo se mostrara en forma
de List-Item con los valores que devuelva la lista de valores cargados.

Operaciones que se pueden realizar a nivel de campo

43

Cambiar etiquetas de campos: En los programas, sean dindmicos o no, se puede modificar el
texto de las etiquetas de los campos para posibilitar la traduccion del E.R.P a otros idiomas y
permitir en una instalacion que estén usuarios con las pantallas en un idioma y otros usuarios con
otro idioma. Los pasos que realizan los programas para obtener la etiqueta de un campo son los
siguiente:
o Programas dinamicos:
= Busca la etiqueta en la personalizaciéon por idioma de los campos para la
plantilla.
= Si la etiqueta no esta personalizada para la plantilla en el idioma del usuario se
busca igual que en los programas no dinamicos.
o Programas no dinamicos:
= Buscar la etiqueta para el campo en el idioma del usuario. Seccion Etiquetas por
Idioma.
= Sino tiene etiqueta en el idioma del usuario usa la etiqueta Estandar.
= Si no tiene ninguna de las anteriores se mostrara la introducida en el codigo
fuente del programa.
Habilitar hipervinculos a otros programas: Si en el campo Llamar programa introducimos el
nombre del fichero de un programa, cuando un usuario que tenga permisos para entrar en ese
programa y se posicione en el campo se habilitard el botdn de llamada directa y podra navegar al

@M EDISA

programa especificado. Si se especifica en este campo el programa a llamar prevalecera sobre el
programa que tenga asociado la lista de valores.

e Calculadora: Activando o desactivando la check del campo Calculadora haremos que cuando el
usuario se encuentre en ese campo y pulsa sobre la lista de valores se abrird una calculadora. Solo
se deberia de activar en campos numéricos.

e Calendario: Indicando “Si” en cualquiera de las dos modalidades existentes, cuando el usuario se
encuentre en ese campo y pulsa sobre la lista de valores se abrird un calendario.

El indicar que un campo tiene calendario desde el mantenimiento de programas lleva asociado que
la validacion se realizara como una fecha.

o Si-Proponer fecha de trabajo si es obligatorio: Si el campo es obligatorio y el usuario
intenta dejarlo en blanco se cubrird de forma automatica con la fecha de trabajo
(:global.fecha _trabajo).

o Si - Sin proponer fecha de trabajo: Si el campo es obligatorio y el usuario intenta
dejarlo en blanco le obligara a introducir un valor manualmente.

e Cambiar / Asignar lista de valores asociada a un campo: Si en el campo Lista de Valores
introducimos el cédigo de una lista de valores, se activara la posibilidad de usar la lista de valores
especificada en ese campo.

e Ejecutar Consulta al Lanzar la L.V.: Si esta activada la check, indicamos que cada vez que se
lance la lista de valores se ejecutara automaticamente consulta de la misma, en caso contrario se
lanzara la lista de valores y se quedara a la espera de que el usuario introduzca un filtro y pulse
F8.

e Clausula WHERE Lista de Valores: La lista de valores puede tener asociada una clausula
WHERE para todos los programas, pero esa WHERE quedara anulada si en este campo
introducimos una especifica para el campo. Si se cubre este campo, esta where prevalecera sobre
la where especificada en la lista de valores. Si dentro de la where ponemos el identificador
:where_lov, este sera sustituido por la clausula where original de la lista de valores, con lo que se
logra una especie de herencia. :where_lov2 sera sustituido por la clausula where 2 definida en la
lista de valores, :where_lovv sera sustituido por la clausula where de validacion definida en la
lista de valores. Ejemplo:

o Where lista de valores: empresa=:global.codigo_empresa

o Where programa: tabla=1 AND :where_lov

o Resultado: tabla=1 AND empresa=:global.codigo_empresa

NOTA: Se deberia usar siempre que sea posible la herencia de la where de la lista de valores al programa,
para que un cambio en la lista de valores original se propague a la where de todos los programas en donde
se usa.

Se puede gestionar la clausula where de la lista de valores en tiempo de ejecucion al través del resultado de
una funcién de base de datos. El comportamiento es muy parecido al explicado en el apartado: Listas de
valores con las etiquetas :SF: y :EF:, pero para indicar que la funcion debe de evaluarse en cada ejecucion
vez ve de una Unica vez al entrar en el programa, se usan las etiquetas :SDF: y :EFD:

Si s6lo se utiliza :global.usuario y :global.codigo _empresa, deberia de utilizarse :SF: y :EF:, pero si se
necesita alterar la where de la lista de valores segun el dato de un campo anterior debe de utilizarse :SFD:
y :EFD:

Ejemplo: Si en el programa PEDIDOS en la where de B1.CLIENTE cambiamos: (:bl.oc_por_actividades = 'N'
OR (codigo_actividad IS NULL OR EXISTS (SELECT 1 FROM org comer _actividades oca WHERE oca.codigo_actividad =
clientes.codigo_actividad ~ AND oca.org comercial = :bl.organizacion_comercial ~AND oca.codigo empresa =

:global.codigo_empresa))) por :SFD:PKVALIDAR ENTIDADES.CW _VALIDA ACTIVIDADES(:global.usuario,
:global.codigo_empresa, :bl.organizacion_comercial, 'clientes.codigo_actividad', ':bl.organizacion_comercial'):EFD:

Al ejecutar la lista de valores o la validacion del cliente, tinicamente hara el AND EXISTS sobre
ORG_COMER_ACTIVIDADES si la organizacion comercial tiene actividades.

44

@M EDISA

45

Validar desde L.V.: Este desplegable puede tener los siguientes valores:

o Si: Fuerza a que cuando se introduzca un dato manualmente en el campo se valide que
ese codigo esté en los registros que se mostrarian en la lista de valores.

o No: Permite introducir cualquier valor. No realiza ninguna validacion contra la lista de
valores.

o Si- Llamar programa asociado: Cuando se introduce manualmente un dato que no se
puede validar contra la lista de valores y la lista de valores tiene asociado un programa
se abrird el programa automaticamente para que el usuario pueda crear el registro.

o Si-Forzar Lista de Valores Contextual: Indica que en la validacion del campo siempre
se lance la lista de valores, incluso aunque el valor introducido por el usuario en el campo
unicamente devuelva un registro. Si se quiere forzar que la validacion siempre sea a través
de la lista de valores se debera activar también la check “Bloquear validacion sin pulsar
INTRO / TABULACION”.

Forzar Filtro al Ejecutar Consulta: Cuando se activa, en el bloque no se permitira ejecutar
consulta sin antes introducir un valor de filtro de este campo, es decir, si el usuario pulsa F7,
mientras no introduzca un valor para filtrar en el campo no se le permitira ejecutar consulta con
F8. NOTA: Para que funcione totalmente esta opcion es necesario que a nivel de bloque en el
fuente tenga el disparador KEY-EXEQRY con la llamada a DISPSTD.KEY EXEQRY como
minimo.

Desactivar bisqueda contextual (En opciones avanzadas): Hay campos donde la busqueda
contextual puede ser incompatible con ellos, ya que puede haber varios registros validos y al hacer
la validacion va a estar saltando la lista de valores en bucle mientras no se salga del campo con el
raton. Ver apartado busqueda contextual para mas informacion.

Bloquear salto de campo en L.V.: Si se activa la check cuando se selecciona un registro de la
lista de valores el cursor se mantendra en el campo que ha llamado a la lista de valores, si esta
desmarcado saltara al siguiente campo navegable.

Tipo L.V.: Permite indicar el formato que va a tener la lista de valores:

Normal: Lista de valores simple.

Grupos 9 Registros: Ver apartado Listas de Valores por Grupos.

Grupos 5 Registros: Ver apartado Listas de Valores por Grupos.

Multiseleccién: Ver apartado Listas de Valores de Multiseleccion.

Multiseleccién Totalizada: Ver apartado Listas de Valores de Multiseleccion.
Rellenar List-Item: Se usa en campos de tipo List-Item, para que sean rellenados al
iniciarse el programa con los valores proporcionados por la lista de valores.

o Seleccion Icono: Al pulsar sobre el botdn de lista de valores al usuario le aparecera una
ventana mostrando todos los iconos que van incluidos en el estandar de Libra. Al indicar
este tipo, no hace falta indicar nada en el campo "Lista de Valores".

o Seleccion Color: Al pulsar sobre el botdn de lista de valores al usuario se le abrirad una
ventana en la que puede seleccionar un color de forma visual. El valor que retorna es el
RGB en formato hexadecimal.

L.V. Carga Registro Unico: Se puede indicar que un campo asuma de forma automatica el valor
de la lista de valores en el caso de que la lista de valores s6lo devuelve un inico registro. Se puede
indicar el punto en donde debe de realizarse la carga:

o No: No se comprueba si la lista de valores solo tiene un registro valido.

o Si- Cargar al entrar en campo: Se hace en el WHEN-NEW-ITEM-INSTANCE, en los
registros nuevos, al entrar en un campo que esta vacio y tiene activado este parametro, se
realiza la comprobacion, si s6lo hay un registro se utiliza y se salta al siguiente campo.
Esta opcion marca el registro como inicializado, por lo que no es una buena opcion para
el primer campo del registro.

o Si - Cargar al inicializar el registro: Se hace en WHEN-CREATE-RECORD. Es
especialmente util para inicializar el primer campo del registro o aquellos campos que no
dependen en absoluto de valores de campos anteriores.

O 0O O O 0 O

@M EDISA

46

Obligar: Pone como obligatorio el campo y pone en negrita la descripcion del campo.

Ocultar: Hace invisible el campo.

Desactivar Modificacién: No permite la modificacion del campo a los usuarios.

Desactivar Navegacion: Hace que en la navegacion normal por teclado no se pase por ese campo,
se podria ir con el raton.

Validacién Filtro: Si el dato introducido por el usuario existe en la tabla correspondiente pone la
descripcion de forma normal, si no existe no carga la descripcion, pero deja continuar, esto es util
cuando tenemos campos DESDE/HASTA y queremos poner desde AAAAAA aZZ7Z777.
Desactivar Busqueda Contextual: Si el usuario tiene marcado que se utilice la busqueda
contextual y la lista de valores para un mismo codigo puede tener dos registros validos entrard en
un bucle en donde el usuario no puede salir de la lista de valores ya que se la vuelve abrir, en ese
caso es necesario desactivar la lista de valores contextual para evitar que suceda esto.
Independiente de mayusculas / mintsculas: Si se activa para un campo, cuando se haga una
busqueda en ese campo con entrada / ejecucion consulta hara la busqueda independientemente de
que en la tabla esté almacenado en mayusculas / minusculas e independientemente de que el patron
de busqueda esté en mayusculas o mintsculas.

Maytsculas / Minusculas:

o Si esta en blanco no hace nada, lo que tenga el programa es lo que vale.

o Forzar Maytsculas: Obliga a que ese campo todo lo que se introduzca esté en
mayusculas.

o Forzar Mayusculas sin Espacios: El valor introducido se convierte en mayusculas, y si
el campo contiene algiin espacio, no sera validado.

o Forzar Minusculas: Obliga a que ese campo todo lo que se introduzca esté en
minusculas.

o Forzar primera letra Maytscula: Lo que introduzca el usuario serd cambiado a
minusculas y la primera letra de cada palabra se pondra en mayusculas.

o Forzar Maytsculas y Minusculas: Obliga a que ese campo se pueda meter tanto
mayusculas o minusculas, se diferencia de la primera opcion en que en el programa puede
estar puesto que se fuerzan mayusculas y de esta forma se permiten tanto mayusculas
como mintisculas’

Etiqueta Boton: Se utiliza para botones y campos de tipo check box. En estos se puede utilizar
junto a la etiqueta estandar o por idioma para el prompt.

Tooltip: Etiqueta que se muestra al pasar el raton por encima del campo.

Indicacion: Texto que se muestra en la barra de estado cuando el cursor entra en el campo.
Etiqueta Excel: Etiqueta que se utilizara para la columna al exportar a hoja de calculo el contenido
del bloque. En el caso de que no tenga etiqueta se utilizara la etiqueta del prompt y en su defecto
el codigo del campo.

Nombre Columna Consulta: Nombre de la consulta que se enviara a la base de datos en vez del
nombre de campo. Para mas informacion ver apartado: Campos de visualizacion de descripciones.
Nombre Columna Orden: Si especificamos algo en esta columna cuando el usuario pulse con el
boton derecho sobre el campo e indique que desea orden ascendente o descendente va a ordenar
por lo que esté especificado en este campo. Esto nos permite por ejemplo cuando tenemos una
columna alfanumérica, pero en la instalacion han metido valores como estos, 1, 2, 9, 10, 15, el
orden lo va a hacer de forma alfanumérica, va a poner el 15 antes del 9, esto se soluciona poniendo
en este campo: LPAD(campo, 15,'0").

Descendente (Nombre Columna Orden Descendente): Permite indicar el criterio de ordenacion
cuando se ordena de forma descendiente. Si esta vacio el criterio que se utiliza es el indicado en
“Nombre Columna Orden” afiadiendo DESC al final. Este campo so6lo se utiliza si se ha alimentado
también el campo "Nombre Columna Orden"

Excel: Se puede indicar el comportamiento del campo a la hora de ser exportado a hoja de célculo.

o Si: El campo puede ser exportado.

o Si- Totalizando si es posible: Si el campo es numérico se intentara totalizar.

@M EDISA

47

o No: El campo no puede ser exportado.
Campo Anterior: Cambia el campo al que salta el cursor cuando pulsamos MAY S+TAB, es decir,
retrocedemos de campo.
Campo Siguiente: Cambia el campo al que salta el cursor cuando pulsamos INTRO o ENTER.
Mascara: Permite cambiar la méscara de formato del campo, por ejemplo, si fuese fecha se podria
poner DD/MM/YY. También admite una constante para indicar que se le aplique la méscara de
cantidades con los decimales que se tengan parametrizados en libra para cantidades poniendo CTD
y DF para el formato de fecha que estd parametrizado en el libra.env. Si se quiere la mascara de
formato con tinicamente 2 digitos para el afio se puede utilizar DFYY.
Tamaiio Maximo: Tamafio maximo en caracteres que va a aceptar el campo. Unicamente se puede
reducir el tamafio sobre el que tenga el fuente, nunca aumentarlo.
Imagen: Si el campo tiene CLASE IMAGEN o CLASE ARCHIVO, se le puede activar que se
realice un escalado de la imagen subida, normalmente para reducir tamafio que ocupe menos. Al
activar la check se abrira la siguiente ventana en donde indicar las dimensiones.

&M Escalado de Imagen
Escalado de Imagen
Ancho (px) _
Alto {px)
a

En esta ventana se indicara las medidas en pixeles a la que se quiere reescalar la imagen, si se
indica Ancho y Alto la imagen sera redimensionada a esas medidas pudiendo perder las
proporciones, por lo que se recomienda unicamente indicar una de las unidades, de forma que la
otra sera calculada para que la imagen contintie manteniendo las mismas proporciones.

Cuando el campo es CLASE _IMAGEN, para que Libra almacene también la imagen original, el
bloque debe de tener un campo asociado a la tabla que se llame
ID_ARCHIVO_<NOMBRE CAMPO_ IMAGEN>, por ejemplo, si el campo que contiene la foto
se llama IMAGEN_FOTO el campo para almacenar la foto original sin procesar debera llamarse
ID_ARCHIVO_IMAGEN _FOTO. En el disparador PRE-DELETE del bloque hay que llamar a
pk_blob2bd.borra_archivo en el caso de que el campo ID_ARCHIVO X tenga valor.

Permitir Consulta: Permite configurar a nivel de campo si puede ser utilizado para realizar el
filtrado del bloque, tanto con F7/F8 como con la bisqueda contextual del bloqueo. Los valores
posibles son:

o Si: El campo se puede utilizar tanto para filtrar por F7/F8 y en la bisqueda contextual de
bloque.

o Sélo en modo entrada consulta: Se puede utilizar para filtrar por F7/F8 pero no se
utilizara para filtrar el bloque en la busqueda contextual.

o No: No se utiliza ni para filtrar por F7/F8 ni en la busqueda contextual de bloque. Este es
el valor recomendable para indicar a los campos no asociados a tabla para que el usuario
no intente filtrar por ellos, ya que le llevara a confusion ya que no filtrara nada con el
valor introducido.

Tipo Editor: Permite definir qué editor va a tener el campo, puede ser uno de los siguientes:

o Automitico: Es la opcién por defecto de todos los campos. Si el campo permite mas
de 1.000 caracteres se habilitara el nuevo editor de texto plano y en caso contrario el
editor nativo de Oracle Forms.

Nativo: Se fuerza a que se utilice el editor nativo de Oracle Forms.

Texto Plano: Nuevo editor de texto.

HTML: Editor en formato enriquecido. En el campo se mostrara con las etiquetas
HTML y para poder verlo bien hay que pulsar en el botén del editor o (Ctrl + E).

@M EDISA

48

Posicion X: Mueve el campo a la posicion x que indiquemos de la pantalla.

Posicion Y: Mueve el campo a la posicion y que indiquemos de la pantalla.

Ancho: Cambia el tamafio de ancho del campo.

Alto: Cambia el tamaiio de alto del campo.

Borde Prompt: Permite indicar a qué esquina del campo se va a anclar la etiqueta del campo.
Alineamiento Prompt: Permite indicar el alineamiento de la etiqueta dentro de la esquina a la
que se encuentra anclada.

Desplazamiento sobre borde: Posicion relativa a la situacion del campo del texto de la
descripcion del campo.

Desplazamiento sobre alineamiento: Parecido a “Desplazamiento sobre borde” pero en la otra
coordenada.

Valor por Defecto: Lo que se introduzca lo metera en el campo de forma inicial cada vez que se
cree un registro nuevo. La check que se encuentra a la izquierda de este campo indica que el valor
introducido debe de ser parseado en tiempo de ejecucion, por ejemplo, si en “Valor por Defecto”
se introduce GLOBAL.CODIGO _EMPRESA y se activa la check, el valor por defecto que se
introducira al crear el registro es el valor que contenga la variable
GLOBAL.CODIGO_EMPRESA en ese momento. Si no se activa la check se introducira el literal
“GLOBAL.CODIGO EMPRESA”.

Ejecutar codigo de Pre-Validacion: Indica si se ejecutara codigo PL/SQL antes de realizarse la
validacion desde la lista de valores, este codigo puede estar definido en el mantenimiento de
programas en el campo Codigo PL/SQL de validacion o en la lista de valores, prevaleciendo el
primero sobre el de la lista de valores.

Cédigo PL/SQL de Pre-Validacion: Codigo que se ejecutara antes de realizar la validacion con
la SQL de la lista de valores. Solo se ejecutara si estd marcada la check Ejecutar.

Cédigo PL/SQL pulsacién INTRO / TABULACION: Se ejecuta cuando el usuario pulsa intro
en el campo. Si esta activa la check “Sélo en campos invalidos” Unicamente se ejecutara si el
campo esta pendiente de validar y se pulsa INTRO o TABULACION, si no esta activada la check
se ejecuta siempre.

Bloquear validacién sin pulsar INTRO / TABULACION: Si est4 activada y el usuario intenta
validar el campo sin pulsar INTRO / TABULACION, por ejemplo, saliendo del campo con el
raton, se le mostrara un mensaje de que debe de pulsar INTRO.

Coédigo PL/SQL de validacion: El programa ya tiene que incorporar en el fuente las validaciones
de integridad necesarias que nunca podran ser alteradas sin modificar el fuente, como por ejemplo,
que un articulo no pueda tener mas de dos unidades de almacén. Pero mediante la introduccion de
codigo PL/SQL de validacion asociado al campo se pueden afiadir restricciones especificas en una
determinada instalacion o qué su cambio no suponga una alteracion del disefio de la aplicacion.

Este codigo PL/SQL se ejecutara después de haberse realizado la validacion desde lista de valores.
En caso de que se tenga marcada la check Validar desde Lista de Valores (si esta check no esta
marcada este codigo se ejecutara igual). Por tanto, si se ha activado la validacion desde lista de
valores se supone que en el momento de ejecutarse este codigo el campo ya tiene un valor valido.

Coédigo PL/SQL de pre-ejecucion de lista de valores: Este codigo se ejecuta en el momento en
que el usuario solicita una lista de valores, y tiene como principal caracteristica que dependiendo
del resultado de su ejecucion podemos hacer que salte una lista de valores u otra.

Codigo PL/SQL de Doble click: Se ejecuta cuando el usuario hace doble click con el ratén sobre
el campo.

Cédigo PL/SQL de entrada en campo: Se ejecuta cada vez que entra el cursor en el campo,
siempre y cuando no se venga de una lista de valores.

Clausula Where por Defecto 2: Si se especifica habilita un boton en la lista de valores para poder
conmutar entre condiciones. Para mas informacion ver el apartado: Listas de valores.

@M EDISA

Tipo Where Validacion: Permite indicar la cldusula where que se usara para realizar la validacion
en caso de listas de valores de doble where. Puede tener los siguientes valores:

o Segun Lista de Valores: Se usa el tipo de validacion indicado en la lista de valores.

o Principal: Se usa la clausula where principal.

o Secundaria: Se usa la clausula where secundaria.

o Personalizada: Se puede indicar una cldusula where personalizada en el campo

“Clausula Where para Validacion”.

Etiqueta Botén Where Defecto y Etiqueta Botén Where Defecto 2: Se usa cuando se especifica
una Clausula Where por Defecto 2 ¢ indican el texto que va a contener el botdon que se habilita
para conmutar entre condiciones. Para mas informacion ver el apartado: Listas de valores.
Clausula Where en modo Entrada Consulta: Permite indicar una Clausula Where que se
aplicara cuando el bloque se encuentre en modo de entrada consulta. Para mas informacion ver el
apartado: Listas de valores.
Seleccion de archivo: En casos de campos en que el usuario deba de introducir una ruta a un
archivo se activara la check “Seleccion archivo”, una vez marcada aparecera la siguiente ventana:

M Tipo de seleccidn de archivo
Tipo de seleccidn de archivo
Sel Seleccion de archivo para abrir hd
Campo Archivo
Campo Directorio
Titulo
Filtro
E]

NOTA: La activacion de seleccion de archivo Uinicamente implica que en ese campo se puede abrir
mediante el boton de lista de valores el dialogo del sistema operativo de seleccion de archivo, en el caso de
querer almacenar un archivo en la base de datos, simplemente es necesario que en el bloque exista un campo
oculto llamado ID_ARCHIVO de tipo NUMBER y al campo donde el usuario va a subir el archivo
(normalmente se llamara NOMBRE ARCHIVO) se le asigne la clase CLASE _ARCHIVO.

o Seleccion: Se indica cual es el objetivo de la busqueda:
= Seleccion de archivo para abrir: Solo se pueden seleccionar archivos
existentes.
= Seleccion de archivo para guardar: Se pueden seleccionar archivos existentes
y no existentes, si se selecciona uno existente se mostrara el mensaje de que se
va a sobreescribir y se pedira aceptacion al usuario.
= Seleccion de directorio: Abre la ventana de seleccion de directorios.

o Campo Archivo: Campo al que se le va a asignar el nombre del archivo. Para indicar el
campo se introducira BLOQUE.CAMPO. Si no se indica se asignara al campo en que se
encuentre el cursor.

o Campo Directorio: Campo al que se le va a asignar el directorio del archivo
seleccionado. Para indicar el campo se introducira BLOQUE.CAMPO.

o Titulo: Texto que aparecera en la ventana de seleccion de archivo.

o Filtro: Se usara para filtrar los tipos de archivos que se visualizaran en la seleccion, como
separador de los tipos de archivos se usara el caracter “|”. Ejemplo para seleccionar
archivos de tipo texto y todos los archivos: “Archivos de Texto (*.txt)|*.txt|Todos los
archivos (*.%)|*.*”

NOTAS:

49

Si a un campo se le asocia mas de un elemento (lista de valores, calendario, calculadora) solo
funcionara uno y este serd en el que indica el siguiente orden: primero lista de valores, segundo
calendario y en tercer lugar la calculadora.

Para mas informacion sobre Cédigo PL/SQL y su estructura, ver el apartado: Cédigo PL/SOL.

@M EDISA

Control de visualizacion de campo segun el sector del grupo empresarial

Se puede indicar a los sectores a los que aplica el campo, de forma que se puede hacer que dependiendo de
los sectores activados a nivel de grupo empresarial el campo esté o no disponible. Ademas, esa informacién
es muy valiosa para el programa de chequeo de version, ya que si un campo Unicamente aplica al sector de
“Extrusion de Aluminio” al chequear la version sabe que unicamente tendréd que tenerlo en cuenta cuando
se esta empaquetando la version de Extrusion de Aluminio. Si hay configuracion de sectores para el campo
el campo “Calculadora” se mostrard con fondo rojo.

Archivo Opciones Edicién Desplazamiente Consulta Ventana Ayuda

14 4 > bl B r4+ 8e 4 ®H X 28
o

Programas | Campo Blogue Avanzadas de Programa Plug-in Pestafias Ventanas Pardmetros Plug-in Informes Botonera Historia

= ~ plantillas 25/04/2023 13:22:05 35
Programa COMPSALC Descripcion Composicidn detallada de saldos Codigo Tipo -
Bloque Descripcién Grafico Excel Seleccion de campos
Bl FILTRQ = o ~ Nunca ~ Segin Usuario -
. Promg sustitucion de la generacién XLS genérica

D LIEN
BOBSERVACIONES obsen| Tipo Autorizacion Dspunible en todos los sectores
BREPORT BIoaUq| gector Sdlo para los sectores |.nd|_cadus =
Excluir en los sectores indicado:

Campo Etique [Desactivar Medificacién
ABOGADOS I Desactivar Navegacion
ACEPTO_LETRAS " validacion Filtro
igsﬁ;iSC[ON de Valores ¥ Ejecutar Consulta ~
ASEGURADOR
BANCOS_REMESA
BANCOS_REMESA_F 7
BANCOS_REMESA_F_MODO Q ‘
BANCOS_REMESA_MODOQ
BANCO_ASEGURADOR_F

BANCO_ASEGURADOR_F_MODO
CAMBIO_ACTUAL
CAMBIO_ASEGURADO

000

- -

En el campo “Tipo Autorizaciéon” se indica como debe de considerar los sectores que se indican en el
multiregistro:

e Disponible en todos los sectores: Se ignoran los sectores indicados

e Soélo para los sectores indicados: Se aplicard en los grupos empresariales que tengan
configurados alguno de los sectores indicados.

e Excluir en los sectores indicados: Al contrario que el valor anterior, se mostrara inicamente
cuando el usuario esté validado en Libra en un grupo empresarial que no tenga activado alguno de
los sectores que se indican en el multiregistro.

50

@M EDISA

Pestafias

Permite indicar que pestaiias tiene el programa (siempre que no sea dindmico), para la traduccion de su
etiqueta por idioma y la autorizacidn por perfiles de usuario.

()] LIBRA EDISA o B

Archivo Opciones Edicidn Desplazamiento Consulta Ventana Ayuda
M4 bW %X e G S 2 EHIA [JNCEE BN

M Progiamas (LIBRA 5.3.3 - MAQUINA VIRTUAL F11R3LIBRA)

[Q Progamss Campo Bloque AvanzadasdeProgiama Pugin | Pestafias | Ventsnas PardmetiosPign Informes Botonera Historia

Programa CONSGEN MACROCONSULTA (VISTA 360)

Pestaiia Etiqueta Estandar

-
CAMNVAS_ARTICULO.TAB_AO1

(CANVAS_ARTICULO.TAB_A02

CANVAS_ARTICULO.TAB_A03

CANVAS_ARTICULO. TAB_AD4

CANVAS_ARTICLLO. TAB_A0S

CANVAS_ARTICULO. TAB_ADG

CANVAS_ARTICULO. TAE_AD7

CANVAS_ARTICULO. TAB_A08

CANVAS_BASE.TABD

CANVAS_CLIENTE . TABD

CANVAS_CLIENTE TAB_COL

CANVAS_CLIENTE.TAB_CO2

CANVAS_CLIENTE TAB_C03

CANVAS_CLIENTE.TAB_C04

CANVAS_CLIENTE TAB_CDS

CANVAS_CRM.TAB_CRMO1

CANVAS_DTOS_FRA_COMPRA.TABD

CANVAS_PROVEEDOR.TABQ

CANVAS_PROVEEDOR TAB_PO1

CANVAS_PROVEEDOR TAB_P02 -
Sistema de Autorizaciol -

Idioma Etiqueta

¢Registro: 117

En el codigo de pestafia introduciremos LIENZO.PESTANA, es decir, para la pestaiia TABI del lienzo
CANVAS BASE introduciremos CANVAS BASE.TABI.

51

Etiqueta Estandar: Introducimos la etiqueta que se usara por defecto en caso de que en el idioma
del usuario no exista etiqueta personalizada. Si no se introduce nada en este campo se mostrara la
etiqueta que contenga el fuente del programa.

Sistema de Autorizacién: Indicamos si perfiles introducidos en el bloque de Perfiles Autorizados
/ Desautorizados pueden visualizar o no la pestaia, es decir, si este campo contiene el valor
Autorizacion solo los usuarios con los perfiles especificados podran visualizar la pestafia y si este
campo contiene el valor Desautorizacion todos los usuarios podran visualizar la pestafia excepto
los de los perfiles indicados.

Bloque Etiquetas por Idioma: Introducimos por idioma la etiqueta correspondiente para la
pestana.

@M EDISA

Informes

52

L J

M
=
|

. LIBRA EDISA
Archiva Opciones Edicin Desplazamiento Consulta Ventana Ayuda
« » M x M4 4B 4 [1 % = 4 @
%) Programas (UBRA 5.4.1 - MAQUINA VIRTUAL F11R3LIBRA)

Progamas Campo Boque AanmcesdePrograma Plugin Pestafas Ventanas PardmetrosPlugin Informes Botonera Historia
Programa COMPSALC Campesicén detallada de saldos
Informe Inicial Saldos Seleccionar como informe inical Barrar informe inicial
+ Obkgatorio seleccionar informe Forzar activacién Tipo Impresora Programa Ambas = Archivo Excel 5i - Desde el report =
 Pedir Pagina Tnicial Corrar Report Background Sequn Usuario ~ Destina Usuario -
Cod Descripein Informe Orden

: Composicion de Saldos compsal? 1a
SoldosBP Composicidn de Saldos 1_compsalcxdoffi_compsaic_H 1
SALDOSV Composicidn Saldos Vertical compsaldv 2
SaldosVBIP Composicitn de Saldos Vertical 1_compsaic.xdoffl_compsaie 2
Sole_ZonaH Listade por Zones istzen 3
Solo_zonaV Listado por Zonas Vertical istzon2 4
Zonss Listado por Zones y Agentes lstrons 5
Zonasv Listado por Zonas y Agentes Vertical istzonaZ 6
Tipo Impresora Horizontales ~ Activado 56lo si no existe 8 Publisher + ‘CO0go Pl/Sql para antes de ejecucin del informe

DECLARE -

Parkmatre Valer Purf matro. v_informe VARCHAR2{100);
P_LIBRA_GRUPO_BALANCE B1.GRUPO_BALANCE afl e
P_LIBRA_CENTRO_CONTABLE BLCENTRO IF :bldvisa_presentacion = 5" THEN
P_DESDE_ENTIDAD B1.DESOE_ENTIDAD IF :b1.5aito = 5 THEN
P_HASTA_ENTIDAD BIHASTA_ENTIDAD w_informe ;= ‘cmgsaled -
P_ENTIDAD_PADRE B1ENTIDAD_PADRE o0 gt para generackte da s te clicaly
P_SALDO_CONTABLE BISALDO_CONTABLE - -
Descripxidn

Archivo Excel:

O
o

Si - Desde el report: Se ejecuta la salida nativa de Oracle para generar la hoja de calculo.
Si— Usando Rep2Excel: El informe no debe tener codigo especifico, se generaun HTML
y se llama a la herramienta rep2excel que lo convierte en Excel.

No dar opcion: No aparece el tipo de archivo Excel en la pantalla de seleccion de
parametros del report.

Tipo Impresora Programa: Puede ser modificado por informe:

O

Verticales: So6lo se mostraran impresoras que no tengan marcado el pardmetro de carro
ancho en impresoras logicas.

Horizontales: S6lo se mostraran impresoras que tengan marcado el parametro de carro
ancho en impresoras logicas.

Ambas: Apareceran todas las impresoras independientemente del parametro de
impresoras logicas.

Destino: También esta relacionado con los informes. Se indica el destino por defecto que va a
proponer el programa. Hay las siguientes opciones:

(@]

O O O O O O

Pantalla.

Impresora.

Archivo.

Email.

Fax

Gestion Documental

Usuario: Buscara en la parametrizacion de la configuracion del usuario, que puede ser
cualquiera de las anteriores.

Apertura automatica hoja de calculo: Indica como debe de comportarse cuando en la impresion
se selecciona impresion a archivo de tipo hoja de calculo. Si se indica “Segin Usuario” se tomara
el valor por defecto que tenga el usuario en personalizacion por usuario / empresa. Si tiene el valor
“Si”, todas las impresiones que generen archivo de hoja de calculo abriran el archivo de forma
automatica independientemente de la parametrizacion del usuario. Si tiene el valor “No”, nunca
se abriran los archivos una vez generados.

Pedir Pagina Inicial: Si se activa, permite al usuario indicar en que nimero de pagina desea
comenzar la numeracion de paginas del informe, en vez de comenzar siempre en 1. Al report se le
pasara el parametro P LIBRA PAGINA_INICIAL que debera contemplar.

@M EDISA

Se pueden configurar otros informes que se ejecutaran en sustitucion del que tenga el fuente del programa
en caso de que el usuario lo seleccione, a esos informes se les pasaran los mismos parametros que recibiria
el listado que tenga el fuente, mas los parametros indicados en la seccion de parametros en los campos
“Parametro” y “Valor Parametro”.

Configuracion de los informes

e Tipo Impresora: Permite indicar a nivel de informe el tipo de impresora (Horizontal / Vertical /
Segln programa).

e Codigo PL/SQL para antes de ejecucion del informe: Este codigo se ejecuta antes de lanzar el
informe seleccionado, de esta forma, se puede alterar el informe que se va a ejecutar en el momento
que el usuario pulsa el boton de imprimir. Para modificar el informe a ejecutar indicara con
PKPANTALLAS.SET VARIABLE ENV(IMP_INFORME!, 'informe');

e Codigo pl/sql para generacion de hoja de calculo: Desde los codigos PL/SQL se puede
configurar la generacion de hojas de célculo, en este codigo PL/SQL se puede introducir el método
de generacion de la hoja de célculo, de forma de que se evite usar Rep2Excel. (Ver apartado:
Generacion de hojas de calculo mediante PKXLSBD).

En la pantalla de seleccion se veria de esta forma:

Desde Cddiga Pastal[C|ientes Morosos
Hasta Cédigo Postal [Top 10 de Clientes
Informe de Ventas de Cliente
Informe =

Destino Pantalla - Imprimir por

Impresora 2° Plano

e Informe: Archivo de reports o BI-Publisher a ejecutar. También Se pueden incluir informes
implementados mediante el generador de informes, para ello en el campo “Informe” se indicara
“GI:” y a continuacion el codigo del informe. Por ejemplo “GI:CLIVTAS” ejecutara el informe
CLIVTAS.

e Nombre archivo sugerido (sin extension): Nombre del archivo que se le propondra al usuario
antes de generar el informe como destino archivo.

Se puede establecer que aparezca un informe seleccionado por defecto, para ello hay que posicionarse en
el informe y pulsar “Seleccionar como informe inicial”. Para quitar el informe inicial hay que pulsar “Borrar
informe inicial”.

Si se activa la check “Obligatorio seleccionar informe” no se permitira dejar en blanco el desplegable de
Informes, de esta forma se anula el informe que es llamado dentro del programa.

IMPORTANTE: En los programas que se rompe la herencia del tamafio y posicion del campo
BREPORT.INFORME se deshabilita el funcionamiento de estos informes. En ese caso se puede forzar
activando la check “Forzar activacion”.

Por codigo se puede interactuar con este campo con las siguientes funciones:

e IMP.GET PROPIEDAD(‘BREPORT INFORME CODIGO INFORME’): Devuelve el codigo
del informe seleccionado.

e IMP.GET PROPIEDAD(‘BREPORT INFORME NOMBRE _INFORME’): Devuelve el
nombre del archivo del informe seleccionado.

e [IMP.GET PROPIEDAD(‘BREPORT INFORME TITULO INFORME’): Devuelve la etiqueta
del informe seleccionado.

El report también recibira los datos del informe seleccionado en los siguientes parametros:
P_INFORME _NOMBRE_INFORME, P_INFORME_CODIGO INFORME,
P_INFORME TITULO INFORME.

53

@M EDISA

Generacion / Impresion Multiples

En la pestana "Informes" del mantenimiento de programas cuando se posiciona el cursor sobre uno de los
informes definidos se habilita un nuevo plug-in "Informes Adicionales" que abre una ventana en donde se
pueden indicar los informes a imprimir a mayores del indicado. En esta misma ventana hay que indicar el
orden en el que tienen que ser impresos / generados.

Los informes adicionales también tienen que estar definidos como informes antes de ser usados como
informe adicional. Si se quiere que el informe no esté visible en el desplegable, de forma que sélo pueda
ser utilizado como informe adicional de otro, se marcard orden 0 y de esa forma se carga al abrir el
programa, pero no se muestra en el desplegable.

Si la descripcion del informe aparece en naranja indica que ese informe tiene configurados informes
adicionales.

También se puede indicar para cada informe el nombre de archivo sugerido. Es importante indicar nombres
de archivos distintos para que cuando durante la impresion de los informes adicionales genere archivos
distintos y no se sobrescriban.

Funcionamiento segun destino:

e Pantalla: Se abre una pestafia del navegador por cada informe.

e Impresora: Se imprimen en orden todos a la misma impresora.

e Fichero: Se genera en el directorio indicado un archivo por cada informe.

e Correo Electrénico: Depende de la configuracion que se tenga por Usuario / Empresa

o Método nativo de Reports: Sera reports quien mande por mail los informes y mandara
un mail por cada informe.

o Java: Todos los informes se adjuntan en el mismo por correo.

o Microsoft Outlook: El método que tenemos de lanzar Outlook con el informe adjunto
s6lo permite adjuntar un tnico archivo, por lo que se meten todos los archivos en un ZIP
y se adjunta ese archivo comprimido con los informes.

o Aplicacion asociada a Tipo de Archivo: Se abren cada uno de los archivos con la
aplicaciéon que tenga asociada en el sistema operativo del usuario y ya desde esa
aplicacion sera el usuario quien manualmente ejecute la accion de envio de correo
electronico.

54

@ EDISA

M LIBRA EDISA - m] X
Archivo Opciones Edicién Desplazamiento Consulta Ventana Ayuda m LlBRA
4« <> Ml |& |~ mr 4+ 8@ L c @ H X @B
&M Programas (LIBRADESARROLLO ELIAS) =I=1%]
Programas Campo Blogue Avanzadas de Programa Plug-in Pestarias Ventanas Parametros Plug-n | Informes Botonera Historia
Programa COMPSALC Composicién detallada de saldos
4| Informe Inicial ~ Saldos | seleccionar como informe inicial Borrar informe inicial]
| |v Obligatorio seleccionar informe | Forzar activacion Tipo Impresora Programa Ambas ~ Archivo Excel 5i-Desde el report -
v Pedir Pagina Inicial Cerrar Report Background Segun Usuario - Destino U&riu -
Codigo Descripcion Informe Mombre archivo sugerido (sin extension) Ofden
sodo: CampossdndeSsas N corocal2 1
saldosElP CGMiposicionide Saldos] i _compsale.xdo/fi_compsal2_H 1
SALDOSY Composicidn Saldos Vertical compsaldy 2
Solo_ZonaH Listado por Zonas listzon 3
Solo_ZonaV Listado por Zonas Vertical listzon2 4
Zonas Listado por Zonas y Agentes listzona 5
Zonasv Listado por Zonas y Agentes Vertical listzona2 &
DIARIOS DIARIOS diarios diarios 1 7
2 ommios kcowsAC dares deros2 s
-
Tipo Impresora Segin Programa ~ Activado Siempre ~ Cadigo Pl/Sql para antes de ejecuciin del infigme,
a
Parametro Valor Pardmetro
-
-
Cédigo pl/sgl para generacién de hoja de cdlculo
-
-
Descripcidn
-
hd -
Registro: 9/9
N LIBRA EDISA —] *

Archivo Opciones Edicidn Desplazamiento Consulta

Ventana Ayuda

- -t &S
4> pie|s] (@[4+ 8 @ [L e BRAIX[a B
= Programas Campo Blogue Avanzadas de Progra Plug-n Pestafias Ventanas Pardmetros Plugdin | Informes | Botonera Historia
-
Programa COMPSALC Composicion detallada de saldos
forme Inicial ~ Saldos | Selecdonar coma informe inicial | Borrar informe inicial
v Obligatorio seleccionar informe Forzar activacidn Si - Desde el report =
Pedir Pagina Inicial & informes Adicionales Usuario .
Informes Adicionales h extension) Orden
1la
Informe Orden 1
DIARIOS DIARIOS la 2
Solo_ZonaH 3
Solo_ZonaV 4
Zonas Listado por Zona: 5
Zonasv Listado por Zonas y Agente:]
DIARIOS DIARIOS 7
D2 8
-
-
Tipo Impresora Horizontales ~ Activado Sdlo si existe BI Publisher ~ (Cédigo Pl/Sql para antes de ejecudidn delinforme
Y
Parametro Valor Parametro
P_ABOGADOS B1.ABOGADOS Y
P_ACEPTO_LETRAS B1.ACEPTO_LETRAS
P_AGENTES_MODO B1.AGENTES_MODO
P_AGRUPACION B1.AGRUPACION hd
P_ASEGURADOR B1.ASEGURADOR Cadigo plfegl para generacion de hoja de calcule
P_BANCOS_REMESA_MODO B1.BANCOS_REMESA_MODO had Y
Descripcicn Mascara
-
- hd
Registro: 2/9

55

@M EDISA

Control de visualizacion de informe segun sector del grupo empresarial

Se puede indicar a los sectores a los que aplica el informe, de forma que se puede hacer que dependiendo
de los sectores activados a nivel de grupo empresarial el informe esté o no disponible. Si hay configuracion
de sectores para el informe el campo “Orden” se mostrara con fondo rojo.

Archivo Opciones Edicion Desplazamiento Gonsulta Ventana Ayuda
4 € » pl Er+ ee 4 & H X 2 ®
(-5l Programas CEL

Programas ~ Campo Bloque Avanzadas de Programa Plug-in Pestafias ~ Ventanas Pardmetros Plug-in = Informes = Botonera Historia
-

Programa COMPSALC Composicion detallada de saldos

Informe Inicial Saldos Seleccionar cof o

I; Obligatorio seleccionar informe " Forzal Archivo Excel Si - Desde el report =~
2 Sectores
Destino Usuario K

Tipo Autorizacién Disponible en todos los sectores =
S6lo para los sectores indicados sugerido (sin extensién) Orden

Sector . ™
Excluir en los sectores indicados

de Saldos - BIP
saldosBIP2_2 Composicion de Saldos - BIP (Total Vel
saldosBIP Composicion de Saldos - BIP (Con gréf|
saldosBIPY ~ Composicion de Saldos - BIP Vert.
Saldos Composicion de Saldos
SALDOSV Composicion Saldos Vertical
Solo_ZonaH Listado por Zonas
Solo_ZonaV Listado por Zonas Vertical
Zonas Listado por Zonas y Agentes |
Zonasv Listado por Zonas y Agentes Vertical Q ."

»

O OO U R W e

Tipo Impresora Horizontales - Activado S6lo si existe BI Publisher - Cédigo Pl/Sql para antes de ejecucion del informe

En el campo “Tipo Autorizaciéon” se indica como debe de considerar los sectores que se indican en el
multiregistro:

e Disponible en todos los sectores: Se ignoran los sectores indicados

e Sélo para los sectores indicados: Se aplicard en los grupos empresariales que tengan
configurados alguno de los sectores indicados.

e Excluir en los sectores indicados: Al contrario que el valor anterior, se mostrara inicamente
cuando el usuario esté validado en Libra en un grupo empresarial que no tenga activado alguno de
los sectores que se indican en el multiregistro.

56

@M EDISA

Ventanas

Nos permite indicar qué ventanas tiene el programa, para la traduccion de su etiqueta por idioma.

M LIBRA EDISA = = n
Archivo Qpciones Edicion Desplazamiento Consulla Ventana Ayda
M4 » B X hd (G E D 4] 1% @ & @
|81 Programas (LIBRA 53 3 - MAQUINA VIRTUAL F11R3LIBRA)
EQ Programass Campo Bloque AvanzadasdePrograma Plugin Pestafias | Ventanas | PardmetrosPlugin Informes Botonera Historia

Programa CONSGEN MACROCONSULTA (VISTA 360)

Etiqueta

Registro: 111

e [Etiqueta: Introducimos la etiqueta que se usara por defecto en caso de que en el idioma del usuario
no exista etiqueta personalizada. Si no se introduce nada en este campo se mostrara la etiqueta que
contenga el fuente del programa.

e Bloque Etiquetas por Idioma: Introducimos por idioma la etiqueta correspondiente para la
ventana.

57

@M EDISA

Plug-in
Un plug-in consiste en parametrizar llamadas a otros programas desde la botonera vertical.

Lo vamos a ver con un ejemplo: Imaginemos que un cliente nos pide que desde las lineas de los albaranes
de compra quiere consultar las tarifas de compra del articulo.

Para configurar la llamada iremos al Mantenimiento de programas y en la secciéon de bloques hay que
posicionarse en el bloque en el que se quiere afiadir un plug-in.

En el ejemplo que estamos viendo el bloque en el que queremos afadir el plug-in es el B3, en la descripcion

normalmente ya indica a que se corresponde “Lineas de Entradas Albaranes Compras”, y vamos a la pestafia
“Plug-in”.

Llamaremos a una consulta ligera llamada tarprolt, que recibe los siguientes pardmetros:

e CODIGO_ARTICULO: Coédigo del articulo que queremos consultar.

e ORGANIZACION_COMPRAS: Codigo de la organizacion de compras en la que queremos
consultar los precios.

e FECHA VALIDEZ: Fecha a la que queremos que estén vigentes los precios.

El resultado de la parametrizacion del ejemplo seria el siguiente:

Archivo Opciones Edicion Desplazamiento Consulta Ventana Ayuda

4 <4 » »l =4+ ee /2c Bt RAX »
L3 Programas 5 E
Programas ~ Campo Blogue Avanzadas de Programa = Plug-in Pestafias Ventanas Parametros Plug-in Informes Botonera Historia
-
Programa A_ENCOM Entrada de Albaranes Compras
Bloque B3 Lineas de Entradas Albaranes Compras

Esperar a que termine el Programa Llamado Botonera Vertical

Permitir grabar en programa llamado Botonera Horizontal
Forzar grabar cambios antes de ejecutar Mend Contextual Mend Lateral Teda rapida
Cédigo Descripcién Programa Llamado | | Icono | Plantilla ID Orden |
Tarifas por Proveedor tarprolt vV sitemap_color 4 -
-
‘Campo Control Activadén Operacién Valor
Modo Mend Reemplazar ~ Modo Consulta No Solo Consulta ~ Sistema de X izacid: S
Parametro Valor Parametro Cbdigo Pi/Sql Ejecutar en el registro actual -
CODIGO_ARTICULO B3.CODIGO_ARTICULO - -
FECHA_VALIDEZ B1.FECHA_PEDIR
ORGANIZACION_COMPRAS B1.0RGANIZACION_COMP
Descrindd

+ Ejecutar en vez del programa
Al ejecutar el programa, al entrar en las lineas la botonera aparece el siguiente boton:
-
==| | Tafias por Proveedor

Al pulsar el nuevo boton después de haber introducido el codigo del articulo aparece la ventana del
programa llamado, que al ser una ventana modal parece que esta totalmente integrada en el programa.

58

@M EDISA

i -
Entrada de Albarén | Lineas de Albardn

&

A veuy i s

N° Doc. Interno 610 Org. Compras 1 COMPRAS NACIONALES Centro Contable 001 EMPRESA 1
N° Doc. 610 00007 PESCADOS AMARO GONZALEZ S.A.
Fecha 22/10/2022 Almacén 001 ALMACEN PRINCIPAL UBICADO Peso total Divisa EUR
YL TP D Tarifas de Proveedor

Consulta de Tarifas de Compras de Articulos Nuevo Abarin
Regalo Lin Articulo, porte

1 Articulo 31335 FILETE LUBINA FRS /CAJA Tarifas Vigentes a -
Organizacién de Compras 1 CCOMPRAS NACIONALES 22/10/2022
Consumo Subembalaje Embalaje Distribucién Expedicién

Proveedor _Nombre Divisa Fecha Val. KN s WO [CAIA PALET

[TTTT I SLINKER ESPARA, S.A. EUR 01/10/2022 2,5000 2,5000 2,5000 2,5000 100,0000 ~

00014 S.E. DE CARBURQS METALICOS, SA. EUR 01/10/2022 2,7000 2,7000 2,7000 2,7000 108,0000
Impuestos

Descuentos
-
Referencia Proveedor Descuentos Acumulados - 1
Descripcién Proveedor 1 Descripcién Proveedor 2
Fecha Cadudidad
Pedidos Cerrados

Zona M Situacién N Tipo Linea 1:c Cerrar Linea Pedidos

La pantalla de configuracion de plug-ins consta de dos bloques, el primero es en el que especificamos los
plug-ins que se quieren activar en el bloque anteriormente seleccionado. Campos para configurar plug-ins:

59

Cédigo: Sera un codigo que le daremos segun el criterio que se quiera. El usuario no lo va a
visualizar.
Descripcion: Sera el texto que aparecera al pasar el raton por encima del icono del plug-iny en el
menu en el apartado “Opciones”.
Programa Llamado: Nombre del programa, informe, o disparador que se llamard cuando el
usuario pulse el botén correspondiente al plug-in. Si se especifica codigo PL/SQL indicado que se
ejecute en vez del programa se puede poner aqui cualquier cosa ya que lo va a ignorar en el caso
de que list-item que se encuentra debajo del codigo PL/SQL tenga el valor “Ejecutar en vez del
programa”.
o Ejecutar informe del Generador de Informes: Se indicara el codigo del informe con
el prefijo GI: (ejemplo: GI:VENTAS).
o Ejecutar un disparador definido dentro del propio fuente: Se indicara el nombre del
disparador a ejecutar con el prefijo TG: (ejemplo: TG:MI_TRIGGER)
o Ejecutar un programa forzando una determinada opcién de menu: Se indicara el
codigo de la opcidon de mentl con el prefijo MN: (ejemplo: MN:2P102323).
Forzar grabar cambios antes de ejecutar: Si el usuario tiene cambios que todavia no han sido
grabados en la base de datos, antes de ejecutar el plug-in se le mostrara un mensaje en el que se le
pide si desea grabar los cambios. Si el usuario indica que “No” se cancela la ejecucion del plug-
in.
Esperar a que termine el Programa Llamado: En caso de activar esa opcion el programa
llamado funciona igual que si el usuario fuese por ventanas y lo abriese desde el men, es decir,
el programa llamador contintia su ejecucion, la conexion a la base de datos es distinta para cada
programa. El inconveniente principal es que el programa llamado no puede devolver valores al
programa llamador y tampoco puede compartir variables de sesion de la base de datos, y como
ventaja se evita el mensaje “No se puede iniciar otra llamada a pantalla” cuando el usuario tiene
varios programas llamados de forma concurrente.
Permitir grabar en programa llamado: Unicamente tiene sentido cuando esté activada la check
“Esperar a que termine el Programa Llamado”. Cuando el programa llamador espera al programa
llamado se comparte la misma conexion con la base de datos, por lo que si el programa llamado
hace un commit también afectara a lo que tenga pendiente de grabar el programa llamador. Si se

@M EDISA

60

activa esta check al usuario no se le permite grabar, los cambios que haga tienen que ser grabados
una vez regrese al programa llamador.

Botonera: Se puede indicar si el boton se quiere que aparezca en la botonera vertical o en la
horizontal. La botonera vertical tiene capacidad para mas botones.

Icono: Nombre del icono a utilizar. Este campo dispone de una lista de valores de todos los iconos
disponibles en Libra.

Menu Lateral: Esta check unicamente aplica cuando en “Programa Llamado” es un programa de
la movilidad de Libra. Al activar esta check el programa se abrird en navegador del menu lateral
reemplazando el ment del usuario. El usuario para cerrar ese programa y volver a visualizar el
menu tiene que pulsar sobre los tres puntos del menu y seleccionar “Regresar al Ment”.
Plantilla: En caso de ser un programa dinamico el que se indica en “Programa llamado” se puede
forzar a que se ejecute con una determinada plantilla.

ID: En caso de que el programa indicado en “Programa llamado” tenga varias personalizaciones
se puede forzar a que se ejecute con una en concreto.

Orden: Si el bloque tiene varios plug-in indicara en que orden se muestran en la botonera vertical.
Lo normal sera indicar el orden de 1 a 20, siendo el menor nimero el que primero saldra, justo
después de los botones que ya tenga el programa definido de forma fija.

Tecla rapida: Se puede asignar a un plug-in una tecla de funcién de manera que al ser pulsada se
ejecute dicho plug-in. La paridad entre el nimero de tecla rapida y la tecla real del teclado
dependera del fichero de recursos de Oracle Forms que tenga el pc instalado. Por defecto son las
siguientes:

o 1: CONTROL+SHIFT+F1

2: CONTROL+SHIFT+F2

3: CONTROL+SHIFT+F3

4:F11

5:F5

6: F12

7: CONTROL+SHIFT+F7

8: CONTROLASHIFT+F8

o 9: CONTROL+SHIFT+F9

Control de activacion y desactivacion del plug-in: El plug-in se puede activar o desactivar en
base a un valor de un campo del programa:

o Campo Control Activacion: Campo en el que se va a comprobar el valor que tiene a la
hora de decidir si se activa o desactiva el plug-in. Se indicara BLOQUE.CAMPO. Cada
vez que el usuario haga un cambio en el campo indicado se realizara la evaluacion del
control. Se pueden configurar campos adicionales sobre los que aplicar la evaluacién en
el boton “Campos en los que evaluar el control de activacion” de la botonera vertical.

o Operacion: Lista de operaciones soportadas para hacer la comparacion.

o Valoer: Valor sobre el que se evaluara la Operacion, si el resultado de la operacion es
TRUE se activa el campo y si es FALSE se desactiva. Si en “Operacion” se ha indicado
“Expresion” en este campo se indicara una expresion booleana, es decir, que devuelva
TRUE o FALSE. Ejemplo: (:bloque.campol ='XXX' OR :b3.campo2 ="YYYY").

Modo Menu: Indica si al llamarse el programa se debe de mantener el menu del programa
llamador en el programa llamado o que este inicialice su propio ment. Valores posibles:

o No reemplazar: Se mantiene el menu del programa llamador en el programa llamado.

o Reemplazar: Se inicializa el menu del programa llamado.

Modo Consulta: Indica si al llamarse al otro programa se va a hacer en modo de solo consulta o
no.

o Solo Consulta: En el programa llamado solo se podran ejecutar consultas, nunca
modificacion de datos.

o No sélo consulta: En el programa llamado se pueden modificar datos.

O O O 0O O O O

@M EDISA

e Codigo PL/SQL: Si tiene contenido ejecuta este codigo y dependera de lo que tenga “Tipo de
ejecucion de codigo PL/SQL” tiene o no en cuenta los campos Programa llamado, Modo menui,
Modo consulta y del contenido del bloque de parametros. Ver seccion de Codigo PL/SQL para
mas detalles.

o Ambito de ejecucién del Cédigo PL/SQL: Sobre el Codigo PL/SQL hay un List-Item
que permite indicar sobre qué registros se debe de ejecutar ese codigo. Los valores que
puede tomar son los siguientes:

= Ejecutar en el registro actual: Unicamente se ejecuta una vez y la ejecucion
se realiza en el registro en el que se encuentra el cursor.

= Ejecutar para todos los registros: Se va ejecutar ese codigo para todos los
registros que existan en ese momento en el bloque. Por defecto se ejecuta para
todos los registros que se encuentran en el bloque en el que se encuentra el
cursor, pero a partir de la version 6.0.8 de entorno se puede indicar un bloque
en concreto sobre el que ejecutar el codigo PL/SQL en cada uno de sus registros,
para ello hay que indicar el bloque en el campo “En bloque”.

= Soélo en registros seleccionados: Si el bloque tiene activada la check “Habilitar
seleccion de registros™, el usuario puede seleccionar varios registros y el plug-
in se ejecutara por cada uno de los registros que tenga seleccionados el usuario,
si el usuario no ha seleccionado ninguno se ejecutara sobre el registro en el que
se encuentra el cursor.

= Sélo seleccionados o para todos si no hay seleccién: Se comporta igual que
“Soélo en registros seleccionados”, con la diferencia de que si el usuario no ha
seleccionado ningln registro se ejecutara para todos los registros que tenga el
bloque en ese momento en vez de hacerlo unicamente para el registro actual.

NOTA: Si se selecciona una opcion diferente a “Ejecutar en el registro actual”, se habilita
un boton “...”, al pulsar en este boton se abre una ventana en donde se pueden indicar dos
“Codigos PL/SQL adicionales™.

&M Codigos PliSql Adicionales de Plug-in
Cddigos PISql Adicionales de Plug-in

Cddigo Pl/Sql a ejecutar antes de procesar registro a registro

Cédigo PIfSal a ejecutar después de procesar registro a registro

E

= Coédigo PL/SQL a ejecutar antes de procesar registro a registro: Este codigo
PL/SQL se ejecuta antes de comenzar a ejecutarse el codigo PL/SQL
parametrizado en el plug-in, en este PL/SQL se podria cancelar la ejecucion,
mediante “:p_parar_ejecucion”.

= Cédigo PL/SQL a ejecutar después de procesar registro a registro: Este
codigo PL/SQL se ejecuta al terminar de procesar por cada registro el codigo
PL/SQL del plug-in.

o Tipo de ejecucion del cédigo PL/SQL:

= Ejecutar en vez del programa: No se llama al programa indicado en
“Programa llamado”, solo se ejecuta el codigo PL/SQL.

= Ejecutar antes del programa: Primero se ejecuta el codigo PL/SQL y luego se
ejecuta el programa indicado en “Programa Llamado”. En el c6digo PL/SQL se

61

@M EDISA

puede saber si se estd ejecutando antes del programa si
pkpantallas.get variable int varchar2('PKLIBPNT.PUNTO_ EJEC CODIGO
_PLSQL") devuelve el valor ‘A’.

= Ejecutar después del programa: Primero se ejecuta el programa indicado en
“Programa Llamado” y una vez se sale de ese programa se ejecuta el codigo
PL/SQL. En el codigo PL/SQL se puede saber si se esta ejecutando antes del
programa si
pkpantallas.get variable int varchar2('PKLIBPNT.PUNTO_ EJEC CODIGO
_PLSQL") devuelve el valor ‘D’.

= Ejecutar antes y después del programa: Se ejecuta antes de ejecutarse el
programa indicado en ‘“Programa Llamado” y otra vez después de salir de ese
programa.

Con solo especificar estos datos ya tiene que aparecer en la botonera del programa al entrar en el bloque el
boton del plug-in, pero lo unico que hara al pulsarlo es llamar al programa, pero sin ningun parametro, en
el ejemplo que estamos siguiendo el programa llamado no sabe el articulo que tiene el usuario en la linea
del albaran de compras, por tanto, no podra mostrar el precio, para pasar los parametros dependera del caso
y del programa que se llame.

Los campos que tenemos que indicar para pasar parametros son los siguientes:

e Parametro: Nombre del parametro que recibe el programa llamado, este dato depende del
programa al que llamemos, posiblemente el consultor tenga que consultar a un técnico para que le
diga los parametros que tiene que pasar.

e Valor Parametro: Permite configurar de donde va a obtener el valor del programa principal para
ser pasado al parametro del programa plug-in. Este valor se puede ser de cuatro tipos:

o Variable: Se puede obtener de:

= Campo: Se especifica en formato BLOQUE.CAMPO del que queremos obtener
el valor. Este sera la opcion mas comun.

= Variable global: Se introduce GLOBAL.VARIABLE.

= Parametro: Pardmetro local del programa principal, se introduce
PARAMETER.NOMBRE PARAMETRO

o Constante: Sera un valor fijo y lo indicaremos entre comillas simples, por ejemplo
‘10002°.

o Formula: Las formulas seran evaluadas en el momento de la ejecucion del plug-in. Para
indicar una férmula hay que indicar el prefijo F: y a continuacion la formula. Ejemplo:
F:'01/01/"' || TO _CHAR(f current date, 'YYYY')

o Propiedad: Se pasara : XXX:<objeto>:<propiedad>, donde XXX, indica el tipo de objeto
del que se quiere obtener la propiedad. Ejemplo: :GBP:CAMPOS:DEFAULT WHERE
se corresponde con la propiedad DEFAULT WHERE del bloque CAMPOS. Tipos:

= GBP: Bloque (Get_Block Property).

= GIP: Item (Get_Item_Property).

= GWP: Window (Get_ Window_Property).

= GFP: Form (Get_Form_Property).

= GCP: Canvas (Get_Canvas_Property).

= GTP: Tab (Get_Tab_Page Property).

= GMP: Menu (Get Menu_Item_Property).

= GII: Item Instance (Get Item Instance Property).

= GLL: Get _List Flement Label. Si la propiedad es '0' devolvera el texto del
elemento seleccionado en ese momento.

= PIP: DISPSTD.GET PROPIEDAD del Item.

= PBP: DISPSTD.GET_PROPIEDAD del Bloque.

= PFP: DISPSTD.GET PROPIEDAD del Programa.

62

@M EDISA

Devolver valor desde el plug-in al programa llamador

Para devolver valores a campos del programa llamador desde el programa llamado usaremos la siguiente
instruccion:
VALIDACIONES.RETORNO_ PLUG IN(<valor a devolver>, <destino>);

e <valor a devolver>: Valor que envia el programa llamado al programa llamador.
e <destino>: Campo o parametro del programa llamado en donde se va asignar el valor.

Ejemplo:

VALIDACIONES.RETORNO PLUG_IN(:bsustituidos.codigo_articulo_sus, 'B8.REFERENCIA');

Este codigo asigna en BS.REFERENCIA del programa llamador el wvalor contenido en
bsustituidos.codigo_articulo del programa llamado.

Permisos

Cuando se desarrolla un programa para que funcione Unicamente como plug-in, para evitar tener que
ponerlo en los menus por perfil se puede indicar en el tipo del programa que es “Plug-in”.

Plantillas L/ UDJZULL UDIULIHT z

Tipo Sin Definir |

Grafico

“ Nunca

Plug-In Filtro Ejecuta Metadatos

- -

Autorizar / Desautorizar plug-in

En el mantenimiento de programas personalizados se puede especificar que perfiles tienen acceso a un
determinado plug-in o qué perfiles lo tienen desautorizado.

Cddigo Pljsgl Elecutar en el registro actual -

Eiscut dal

ul

de Autorizacién
Desautorizacion - Con al menos un perfil del usuario desautorizado -
Perfiles Autorizados [Desautorizados

»

-
-

Si en el campo “Sistema de Autorizacion” se indica “Desautorizacion” los perfiles indicados en “Perfiles
Autorizados / Desautorizados” no podran ejecutar el plug-in, si no se especifica ninguno todos los usuarios
pueden usar el plug-in.

Si en “Sistema de Autorizacion” se indica “Autorizacion” solo los perfiles indicados en “Perfiles
Autorizados / Desautorizados” podran ejecutar el plug-in, si no se especifica ninguno ninglin usuario podra
ejecutar el plug-in.

Plug-ins globales a un programa

Se pueden crear plug-ins globales a todos los bloques de un programa, el funcionamiento es similar a
cuando se crean para un determinado bloque, lo Unico que hay que hacer es asociarlos al bloque
.GLOBALPLUGINS (importante, tiene un punto al principio del texto GLOBALPLUGINS).

Crear plug-ins globales a todos los programas de Libra.

También se pueden crear plug-ins globales a todos los programas y sus bloques, para ello hay que dar de
alta el programa con cédigo .GLOBALPLUGINS (importante, tiene un punto al principio del texto
GLOBALPLUGINS) con un tnico bloque .GLOBALPLUGINS (también con un punto al principio del
texto).

63

@M EDISA

Control de visualizacion del plug-in segun sector del grupo empresarial

Se puede indicar a los sectores a los que aplica el plug-in, de forma que se puede hacer que dependiendo
de los sectores activados a nivel de grupo empresarial el plug-in esté o no disponible. Si hay configuracion
de sectores para el plug-in el campo “Orden” se mostrara con fondo rojo.

Archivo Opciones Edicion Desplazamiento Consulta Ventana Ayuda

. 1 » p
4 <4 > bl g3 + B & Q 4 Lt RAX 2 B
[Programas BEH
Programas Campo Bloque Avanzadas de Programa = Plug-in Pestafias ~ Ventanas Pardmetros Plug-in Informes Botonera Historia
-
Programa ABSORCEN
Bloque B1
Sectores
Tipo Autorizacién Disponible en todos los sectores o
Aplicar a Sectores
| Sector Lateral Teda répida
= Codigo Descripcion - |htilla ID Orden |
| 01 Llamada a programa s =
|
-
-
Campo Control Activacién PARAMETER.PADS Operacion = ~ Valor S
Modo Memi Reemplazar Modo Consulta No Solo Consulta Sistema de Autorizacion Desautorizacion “

En el campo “Tipo Autorizaciéon” se indica como debe de considerar los sectores que se indican en el
multiregistro:

e Disponible en todos los sectores: Se ignoran los sectores indicados

e Soélo para los sectores indicados: Se aplicard en los grupos empresariales que tengan
configurados alguno de los sectores indicados.

e Excluir en los sectores indicados: Al contrario que el valor anterior, se mostrara inicamente
cuando el usuario esté validado en Libra en un grupo empresarial que no tenga activado alguno de
los sectores que se indican en el multiregistro.

Duplicado automatico de tablas detalle al duplicar registro de bloque

A los bloques se les puede asociar una lista de relaciones que se usaran para duplicar los registros hijos de
la tabla asociada al bloque cuando se duplique un registro. Al indicar los c6digos de relacion ya es el entorno
quien se encarga de todo, crear los registros de detalle y consultar los bloques hijos en el caso de ser
necesario. Las tablas que se duplican pueden o no estar en el mismo programa, por ejemplo, en el programa
de "Organizaciones Comerciales" se puede indicar la relacion "0000007310" y con eso al duplicar una
organizacion comercial también duplicara los tipos de pedido.

Para que aparezca la pestaia "Relaciones Duplicado Registro" hay que indicar el campo "Tabla
Relaciones", que por lo general coincidira (salvo por ejemplo cuando hay vistas actualizables) con la tabla
asociada al bloque.

Se puede utilizar cualquier relacion donde la tabla maestra sea la indicada en tabla relaciones, incluso se
pueden utilizar las relaciones desactivadas para el chequeo de integridad. En el caso de que no se quiera
tener en cuenta una relacion por personalizacion habra que darla de alta en programas personalizados y
desactivar la check "Activa".

En "WHERE adicional" se incluira la condicion que deben de cumplir los registros a duplicar, por lo general
no hace falta meter ahi ningun tipo de where, inicamente en aquellos casos que existan ciertos tipos de
registro no se quieran duplicar.

El campo “Orden” indica el orden en el que han de procesarse las relaciones. Es importante el orden cuando
hay claves foraneas en las tablas ya que debe duplicarse antes la cabecera que las lineas ya que si se
duplicasen lineas sin cabeceras fallaria el proceso al violarse la integridad de la clave foranea.

64

EDISA

M Programas L]
Programas Campo Bloque | Avanzadas de Programa Plug-in Pestafias Ventanas Parametros Plug-in Informes Botonera Historia
Programa USUARIOS2 USUARIOS2
Bloque B1 USUARIOS2
Consulta Operacién con Where Inicial
“ Afiadir -
Where Inicial
Itros
Orden Inicial |Tabla Relacones USUARIOS ...| [l - Bloque de Datos -
[Bloquear salida de registro hasta grabar [~ Mantener campo al cambiar de registro lo Exportacién a Hoja de Calculo Automético -
[+ Confirmar borrado de registro [” Prioridad mismo bloque en cambio de pestafia [Habilitar seleccién de registros
| Desactivar Borrado [Desactivar Insercién | Desactivar Modificacién [Desactivar Consulta
Cadigos PI/Sql (I) Cddigos Pl/Sql (1) Filtros Relaciones Duplicado Registro |
Relacién Orden Activa
0000008020 USUARIOS => ALMACENES_USUARIOS_DET 1 i -
0000008032 USUARIOS => AUTORIZACION_MOVIMIENTOS 2 v
0000008038 USUARIOS => BLOQUEO_EMPRESAS_DET 24 v
0000008040 USUARIOS => CAJAS_USUARIOS_DET 3 il
0000008063 USUARIOS => CONFIGURACIONES_USUARIOS 25 (T
0000008079 USUARIOS => CRMEQUIPOS_USUARIOS 4 v
0000008167 USUARIOS => IMPRESORAS_LOGICAS_USUARIOS 5 v
0000008200 USUARIOS => ORG_CALIDAD_USUARIOS_DET 6 v
0000008201 USUARIOS => ORG_COMERC_USUARIOS_DET 7 (Cd
0000008202 USUARIOS => ORG_COMP_USUARIOS_DET 8 vl
0000008203 USUARIOS => ORG_PLANTA_USUARIOS_DET 9 Cd
0000008222 USUARIOS => PERFILES_USUARIO 10 v
0000008231 USUARIOS => PLANTILLAS_PROGRAMAS_USU_DET 11 ¥
0000008296 USUARIOS => PROG_USU_IMPLOG 12 V]
0000008456 USUARIOS => USUARIOS_GB_DET 13 o
0000008463 USUARIOS => USUARIO_TIPO_PEDIDO_DET 14 g
VGD0000429 USUARIOS => PTOS_ESCANEO_USUARIOS 16 :
VGD0000430 USUARIOS => USUARIOS_TIPO_ORDEN 17 & -
WHERE adicional

Documentacion de modificaciones en programas

Cuando alguien haga una modificacion debera de indicar quién la hizo, la fecha y un comentario, para que
esté disponible esa informacion a consultores.

Person

alizar programas

Cualquier modificacion que se realice en el cliente en el mantenimiento de programas sera sobrescrita y
por tanto perdida en el proximo cambio de version, para solucionar este problema se ha ideado un
mantenimiento de programas personalizado. Este programa es similar al mantenimiento de programas

anterior,

Se puede

pero con varias diferencias.

Las modificaciones que se realicen en este mantenimiento sobre un programa prevaleceran sobre
la informaciéon que exista para el mismo objeto (bloque, campo, pestaia, ventana) del
mantenimiento de programas estandar. Estas modificaciones no seran nunca sobrescritas al
realizar un cambio de version.

En las pestaiias “Botonera” y “Pestafias” tiene un bloque de Perfiles Autorizados / Desautorizados,
en donde se introduciran los perfiles de usuario que podran visualizar o no visualizar la pestafia,
dependiendo del parametro de Sistema de Autorizacion.

Hay una pestafia para poder afiadir plug-ins personalizados a un programa, los plug-in se describen
en un apartado especifico.

crear cualquier personalizacion sin que tenga que existir en el estandar, incluso se podria crear un

programa directamente en programas personalizados sin que tenga que haber nada en las tablas estandar.

65

@M EDISA

Modificar por cédigo las propiedades cargadas del mantenimiento de programas.

DISPSTD.SET_PROPIEDAD

Una vez se han cargado las propiedades del mantenimiento de programas, se pueden alterar durante la
ejecucion desde el codigo fuente del programa.

Para modificar una propiedad se llamar3 a:
DISPSTD.SET PROPIEDAD(<co6digo>, <cédigo propiedad>, <valor propiedad>, <tipo>);

e <codigo>: Dependera de <tipo>, si se quiere modificar la propiedad e un campo serd
BLOQUE.CAMPO, en caso de un bloque sera el nombre del bloque y en caso de un plugin es
BLOQUE.CODIGO PLUGIN.

e <coddigo_propiedad>: Codigo de la propiedad a modificar (ver tabla de propiedades).

e <valor_propiedad>: Valor que se va a asignar a la propiedad.

e <tipo>: Puede contener los siguientes valores:

o C: Propiedad de campo, es el valor por defecto que se asume si no se pasa este parametro.
o B: Propiedad de bloque.
o PI: Propiedad de Plug-in

DISPSTD.GET_PROPIEDAD

Al igual que se puede establecer una propiedad para un campo se puede leer con la funcion:
DISPSTD.GET PROPIEDAD(<cédigo>, <codigo propiedad>, <tipo>) RETURN <valor propiedad>;

A nivel de campo

PROPIEDAD Descripcién Valores posibles
ACTIVAR_CALCULADORA Indica si el campo tiene calculadora. S, N
ACTIVAR_CALENDARIO Indica si el campo tiene calendario, si se]S, N

asocia calendario implica que va a validar el
campo como si fuese una fecha.

CODIGO_LISTA Coébdigo de 1la 1lista de valores que tiene|Cdbdigo de wuna lista de
asociado el campo. valores que exista en
LISTAS_VALORES_CAB o en
LISTAS_VALORES_PERS_CAB.

LV_CODIGO LISTA Igual gque en CODIGO_LISTA, pero aparte de|Igual gque en CODIGO_LISTA.

establecer esta propiedad también carga de la

lista de valores las propiedades: IMPORTANTE: Se debe de tener
LV_COLUMNA DESCRIPCION cuidado en que parte del
LV_COLUMNA CODIGO cédigo se pone la asignacién
LV_WHERE_DEFECTO de esta propiedad ya que
LLAMAR_PROGRAMA implica acceso a la base de
PARAMETRO LLAMAR_ PROGRAMA datos para cargar los datos
CODIGO_PL_SQL_PREVALIDACION de la lista de valores.

TRANSLATE_BC_ARG1
TRANSLATE_BC_ARG2
CASE_INSENSITIVE_QUERY_DESC

LV_EJECUTAR _CONSULTA Indica si al llamar a la lista de valores va a|S, N
ejecutar consulta o va a entrar directamente
en modo de entrada de consulta.

LV_VALIDAR DESDE_LISTA Indica si se va a realizar la validacidén del|S, N, L (Forzar Lista de
campo usando la SELECT y la where de la lista|Valores Contextual), P
de valores. (Llamar programa asociado)

LV_COLUMNA DESCRIPCION Nimero de columna de la lista de valores que|l .. 10

contiene la descripcidn para trasladar al campo
D XXXXX si el usuario selecciona algo de la
lista de valores.

LV_COLUMNA_CODIGO Numero de la columna de la lista de valores que|l .. 10
contiene el cédigo que va a trasladar al campo
desde el que se llama a la lista de valores si
el usuario selecciona algo de 1la lista de
valores.

66

@M EDISA

LV_CONSULTA_BD

SQL que debe de cumplir la normativa de formato

para una lista de valores. Ver apartado: Listas

Ejemplo: SELECT
codigo_rapido cl, nombre c2,

de Valores. rowid rowid_lov FROM
clientes
LV_WHERE_DEFECTO Clausula Where a aplicar a la lista de valores. |Ejemplo: codigo_empresa =

:global.codigo_empresa

LV_WHERE_ENTER_QUERY

Clausula Where a aplicar a la lista de valores

doble click en el campo o cuando pulsa en el
botén de hipervinculo de la botonera.

cuando el bloque estd en modo de entrada
consulta

LV_CODIGO_PL_SQL_PRE_EJECUCION Coébdigo PL-SQL que se ejecutard cuando el |Cdbdigo PL/SQL
usuario llama a la 1lista de wvalores, ver
seccién de mantenimiento de programas y de
cédigo PL/SQL.

CODIGO_PL_SQL VALIDACION Cédigo PL-SQL que se ejecutard después de la|Cédigo PL/SQL
validacién por lista de valores, ver seccidn
de mantenimiento de programas y de cdédigo
PL/SQL.

CODIGO_PL_SQL_PREVALIDACION Coébdigo PL-SQL que se ejecutard antes de la|Cddigo PL/SQL
validacién por lista de valores. Ver seccién
de mantenimiento de programas y de cddigo
PL/SQL.

CODIGO_PL_SQL ENTRADA Cébdigo PL-SQL que se ejecutard cuando el cursor |[Cddigo PL/SQL
entra en el campo. Ver seccidén de mantenimiento
de programas y de cdéddigo PL/SQL.

LLAMAR_PROGRAMA Programa al que se llama cuando el usuario hace |Ejemplo: CLIENTES

PARAMETRO_LLAMAR PROGRAMA

Parametro que se pasa al programa

Ejemplo: CODIGO_CLIENTE

DESACTIVA BUSQUEDA CONTEXTUAL

Si se desactiva y el usuario tiene activada
buisqueda contextual en el campo que se
desactiva no funciona.

S, N

VALIDACION_FILTRO

Indica si se va a validar como si fuese un
filtro, es decir, si 1lo que introduce el
usuario no existe en la validacidén desde lista
de valores se permite continuar y si existe se
carga la descripcién.

VALOR_POR_DEFECTO

Valor por defecto que se va a asignar al
programa en los registros nuevos.

LISTA VALORES_GRUPO

Indica si la lista de valores va a ser normal
o se va a ir mostrando por grupos.

Si con 9 registros.

Si con 5 registros.

No.

Multiseleccién.

: Multiseleccioén
Totalizada.

H 22 un

TRANSLATE_BC_ARG1

Texto reemplazado en la busqueda contextual.
Para mé&s informacidén ver el apartado:
de valores.

Listas

TRANSLATE_BC_ARG2

Texto a reemplazar en la blUsqueda contextual.
Para mas informacidén ver el apartado: Listas
de valores.

CASE_INSENSITIVE_QUERY DESC

Indica si al hacer la buUsqueda contextual por
la descripcidén se va a ignorar la diferencia
entre mayusculas y minGsculas.

COLUMNA_ORDER

Campo o SQL por la que se va a ordenar cuando
se indica con el botén derecho sobre el campo
que se quiere ordenacién ascendente o
descendente.

Ejemplo:

LPAD (codigo_rapido, 8, '0')

LV_WHERE_DEFECTO2

Segunda clausula where de la lista de valores,
si se especifica se habilita un botdén en la
lista de valores para conmutarlas.

ETIQUETA BOTON_ WHERE

En caso de especificar una segunda clausula
where a la lista de botdén serd la etiqueta que
tendrd el botdén para conmutar a la segunda.

ETIQUETA_BOTON_WHERE2

En caso de especificar una segunda clausula
where a la lista de botdén serd la etiqueta que
tendrd el botdén para conmutar a la primera.

67

@M EDISA

TAMANO MAXIMO

Numero méximo de caracteres admitidos.

SELECCION_ARCHIVO

Indica si se habilita lista de valores para
seleccidén de archivos para el campo.

N: Sin seleccién de archivo.
D: Seleccién de directorio.
G: Seleccidén de archivo para
grabar.

A: Seleccidn de archivo para
abrir.

SEL_ARCHIVO_CAMPO DIRECTORIO

seleccién de
devuelve el

En caso de estar activada la
archivos en qué BLOQUE.CAMPO
directorio seleccionado.

SEL_ARCHIVO_CAMPO_ARCHIVO

seleccién de
devuelve el

En caso de estar activada la
archivos en qué BLOQUE.CAMPO
archivo sin ruta seleccionado.

SEL_ARCHIVO_TITULO

Titulo que aparecerd en la ventana de seleccidn
de archivo.

SEL_ARCHIVO_FILTRO

Filtro de los archivos a mostrar.

BLOQUEA_VALIDA_SIN_INTRO

Bloguear que no se pueda validar el campo sin
pulsar INTRO o TABULACION

S: bloqueado.
N: Sin bloquear.

CODIGO_PL_SQL_VALIDA_ENTER

Cédigo PL/SQL que se ejecutarda cuando el

usuario pulse INTRO en el campo.

LV_BLOQUEAR_SALTO_CAMPO

Bloquear que salte de campo cuando se
selecciona un valor de una lista de valores.

S: Bloqueado el salto de
campo.

N: Salta de campo.

PL_SQL_VALIDA ENTER_INVALID

Indica si el
CODIGO_PL_SQL_VALIDA_ENTER se
cuando el campo esté invalido.

coddigo de
ejecuta sdélo

S: Se ejecuta sélo cuando el
campo estd invéalido.

N: Se ejecuta siempre que el
usuario pulse INTRO o
TABULACION

DESACTIVAR LV_AUTOMATICA

Si el usuario / empresa tiene marcado que en
campos obligatorios con lista de valores si se
intentan dejar en blanco se lance
automdticamente la lista de valores, se puede
desactivar mediante esta opcidn.

S: Se desactiva la lista de
valores automédtica.
N: No se desactiva.

DEVOLVER_VALORES_SELECCIONADOS

En caso de que el
LISTA VALORES_GRUPO el valor M
(Multiseleccidbn) o T (Multiseleccidn
totalizada) se puede indicar que los valores
que se han seleccionado automadticamente se
devuelvan al campo que llama a la lista de
valores.

campo tenga en

S: Se devuelven los valores
seleccionados separados por
SEPARADOR_MULTISELECCIONADO
S.

N: No se devuelve, en el
cdébdigo fuente del programa
se tiene que contemplar.

SEPARADOR MULTISELECCIONADOS

Caréacter que separard los distintos valores que
se devuelven de la seleccién en una lista de
valores de multiseleccidn.

FILTRO_OBLIGATORIO_EJE_CONS

Indica si para hacer F8 o pulsar en botdn el
campo tiene que tener valor, es decir, se
obligaria a entrar en modo entrada de consulta
(F7) meter un valor en ese campo y luego
ejecutar la consulta.

S: Obligatorio.
N: Opcional.

CODIGO_PL_SQL DOBLE_CLICK

Coébdigo PL/SQL que se ejecutarda al hacer doble
click en el campo.

ETIQUETA EXCEL

Etiqueta a wusar como titulo de 1la columna
cuando se exporten los valores del campo a hoja
de célculo.

EDITOR_CAMPO

A: Automatico, F: Texto

Plano, H: HTML

Nativo de Forms, P:

APLICA_VA CURRENT_RECORD

Unicamente se utiliza en SET_PROPIEDAD, permite
aplicar el atributo visual indicado a un campo
del registro actual. De esta forma se puede
aplicar cualquier color definido en la vista
V_COLORES_ERP.

Ejemplo:
dispstd.set_propiedad ('BLOQUE.CAMPO',
'APLICA VA_CURRENT RECORD', 'BROWN75OO');

68

@M EDISA

Ejemplo: Asignar al campo B1. CODIGO Ia lista de valores CLIENTES afiadiendo la condicién de que el
estado del cliente sea el especificado en el campo B1.ESTADO, habilitando la validacion por lista de
valores.

IF NVL(DISPSTD.GET_ PROPIEDAD('B1.CODIGO', 'LV_CODIGO_LISTA'), '.') != 'CLIENTES' THEN
DISPSTD.SET_ PROPIEDAD ('B1.CODIGO"', 'LV_CODIGO_LISTA‘ , 'CLIENTES');
DISPSTD.SET_ PROPIEDAD ('B1.CODIGO"', 'LV_VALIDAR_DESDE_LISTA' , 'S');
DISPSTD.SET_ PROPIEDAD('B1.CODIGO', 'LV_WHERE DEFECTO', ':where_ lov AND estado = :bl.estado');
END IF;
A nivel de bloque
PROPIEDAD Descripcién Valores posibles
ENVIAR EXCEL Activa la posibilidad e envio a Excel cuando el|S, N
cursor estd en el blogue
BLOQUEAR_SALIDA HASTA GRABAR Si tiene S, si se modifica un registro el usuario|S, N
no va a poder salir de él mientras no grabe
CODIGO_PL_SQL INICIALIZACION Cébdigo PL/SQL que se ejecuta cada vez que se crea
un registro nuevo.
CODIGO_PL_SQL_VALIDACION Cébdigo PL/SQL que se ejecuta cada vez que se valida
el registro.
CODIGO_PL_SQL_BORRADO Cébdigo PL/SQL que se ejecuta cada vez que se borra
un registro.
CODIGO_PL_SQL ENTRADA Cédigo PL/SQL que se ejecuta cada vez que el cursor
entra en un registro.
CODIGO_PL_SQL_POST_INSERT Cébdigo PL/SQL que se ejecuta después de cada
insercién de registro.
CODIGO_PL_SQL_POST_UPDATE Cédigo PL/SQL que se ejecuta después de cada
modificacién de registro.
CODIGO_PL_SQL_POST_DELETE Cédigo PL/SQL que se ejecuta después de cada
borrado de registro.
CODIGO_PL_SQL CONSULTA Cébdigo PL/SQL que se ejecuta por cada registro que
viene de la base de datos al rellenarse el bloque.
CODIGO_PL_SQL_ENTRADA BLOQUE Cédigo PL/SQL que se ejecuta por cada vez que el
cursor entra en el bloque.
CODIGO_PL_ SQL_ PRE_DUPLICADO Cédigo PL/SQL que se ejecuta antes de duplicar un
registro.
CODIGO_PL_SQL POST_DUPLICADO Cébdigo PL/SQL que se ejecuta después de duplicar
un registro.
CONFIRMAR_BORRADO_REGISTRO Se usa para indicar si se debe pedir confirmacién|S: Se pide confirmacidn
al usuario para borrar el registro. N: No se pide
confirmacién.
SELECCIONAR CAMPOS EXCEL Indica si se va a pedir al usuario cuando envie|S: Se pide al usuario los
los datos del bloque a Excel los campos a ser |campos a exportar.
exportados. N: No se le piden los
campos al usuario.
BLOQUEAR_SALIDA HASTA_ GRABAR Si tiene S, si se modifica un registro el usuario|S, N
no va a poder salir de él mientras no grabe
HABILITAR SELECCION_REGISTROS |Si se pasa el valor S, se habilita la seleccién de|S, N
registros miltiple.
MANTENER_CAMPO CURSOR Si se pasa el valor S, al cambiar de registro|s, N
mantiene el cursor en el mismo campo mientras no
se navegue con el ratédn o a un registro nuevo.
A nivel de programa
PROPIEDAD Descripcién Valores
posibles
CODIGO_PL SQL GRABACION Cbébdigo PL/SQL que se ejecuta antes de grabar.
CODIGO_PL SQL FINALIZACION Cédigo PL/SQL que se ejecuta antes de salir.

69

@M EDISA

SALIR_GRABAR CAMBIOS_AUT Indica si se graban automdticamente los cambios que estén pendientes|S, N
de grabar sin preguntar al usuario cuando se sale del programa
PLT_VALIDA RANGOS_CODIGO Si se pasa el valor N, deshabilita la validacién del rango de cdédigo|S, N
de las plantillas.
ORDER_BY_NULLS Si se pasa L, al ordenar los nulos se mostraran al final L, D
ACTIVA_TRAZA SILENCIOSA Permite activar a partir de se momento una traza silenciosa del |BASICO
programa, es decir, el usuario no recibird en los mensajes los |WARN
cédigos que se afiaden en una traza normal. Mediante este método se | INFO
permite activar traza de forma controlada por programa. DEBUG
TRACE
DUPLICANDO Devuelve si el usuario ha pulsado duplicar en un registro que tiene|S, N, F
relaciones de detalle para ser duplicadas. N: No hay nada pendiente,
S: El usuario pulsd duplicar y se estd esperando a que el usuario
cubra todos los datos de la clave primaria. F: El usuario ha
cubierto los datos de la clave primaria, en cuanto se navegue a un
nuevo campo se procedera al duplicado del detalle, una vez hecho
el duplicado se vuelve a pasar a valor N.

A nivel de plug-in

PROPIEDAD

Descripcién Valores posibles

ACTIVA_PLUG_IN

Activa o

desactiva un plug-in S: Activa plug-in
N: Desactiva plug-in

ICONO

Cambia el icono asignado al plug-in

Permite cambiar el programa
ejecutar en el plug-in.

PROGRAMA LLAMADO que se va a

Si se cambia el programa y hay parametros,
el nuevo programa tiene que ser compatible
con los pardmetros indicados en el plug-in,
en caso contrario la ejecucidén dard error.

A nivel de Informe, mediante IMP.SET_PROPIEDAD

PROPIEDAD Descripcién Valores posibles
PL_SQL_PRE_EJECUCION_REP Cédigo PL/SQL para ejecutar antes del informe.
PL_SQL_POST_EJECUCION_REP Cédigo PL/SQL para ejecutar después del informe.
EJE_PL_SQL_PRE_REP_SCREEN Indica si se ejecuta el cdéddigo de preejecucidédn del informe|S, N
cuando el destino es pantalla.

EJE_PL_SQL_PRE_REP_PRINTER Indica si se ejecuta el cdébdigo de preejecucidn del informe|S, N
cuando el destino es Impresora.

EJE_PL_SQL_PRE_REP FILE Indica si se ejecuta el cdédigo de preejecucién del informe|S, N
cuando el destino es Archivo.

EJE_PL_SQL_PRE_REP MAIL Indica si se ejecuta el cdédigo de preejecucién del informe|S, N
cuando el destino es Correo electrénico.

EJE_PL_SQL_PRE_REP_FAX Indica si se ejecuta el cdébdigo de preejecucidn del informe|S, N
cuando el destino es Fax.

EJE_PL_SQL_PRE_REP_GESTDOC Indica si se ejecuta el cdédigo de preejecucién del informe|S, N
cuando el destino es Gestién Documental.

EJE_PL_SQL_PRE_POST_SCREEN Indica si se ejecuta el cdédigo de postejecucién del informe|S, N
cuando el destino es pantalla.

EJE_PL_SQL_PRE_POST_PRINTER | Indica si se ejecuta el cédigo de postejecucién del informe|[S, N
cuando el destino es Impresora.

EJE_PL_SQL_PRE_POST_FILE Indica si se ejecuta el cédigo de postejecucidén del informe|S, N
cuando el destino es Archivo.

EJE_PL_SQL PRE POST MAIL Indica si se ejecuta el cdédigo de postejecucién del informe|S, N
cuando el destino es Correo electrdénico.

EJE_PL_SQL_PRE_POST_FAX Indica si se ejecuta el cdédigo de postejecucidn del informe|S, N
cuando el destino es Fax.

EJE_PL_SQL_PRE_POST_GESTDOC | Indica si se ejecuta el cédigo de postejecucién del informe|[S, N
cuando el destino es Gestidén Documental.

FICHERO REPORT Informe a ejecutar

CODIGO_IMPRESORA Coébdigo de la impresora que se usara como destino del informe.

70

@M EDISA

SERVIDOR_BIP

Direccidén del servidor de BI-Publisher configurado

NOMBRE_ARCHIVO_ FIJADO

A partir de ese momento se propondrd como nombre de archivo
el indicado, para reestablecerlo habrad que volver a establecer
esta propiedad con el wvalor NULL. Se puede utilizar las
siguientes variables de sustitucidn:

. <usuario>: Se reemplaza por el cdéddigo de usuario.

. <fecha>: Se reemplaza por la fecha en formato
YYYYMMDD

. <hora>: Se reemplaza por la hora en formato HH24MISS

El nombre de archivo debe de indicarse sin extensidén ya que
sera afiadida de forma automética.

Si en el mantenimiento de programas, para el informe en
cuestién se ha configurado un nombre de archivo ese
prevalecerd sobre el indicado en esta propiedad.

SALIR_AUT_BREPORT

Si se pasa S, después de cada impresidén se cerrard la ventana|S, N
de impresién BREPORT

A nivel de Lista de Valores, mediante LV.SET_PROPIEDAD

S: Activa la multiseleccién.
T. Activa la multiseleccién con totalizacién de las columnas numéricas.
N: Desactiva la multiseleccidn.

PROPIEDAD Descripcién Valores
posibles
CENTRAR_LOV Se indica si al abrir la lista de valores se va a centrar en la pantalla|S, N
o se va a quedar en la posicién 0,0 de la pantalla.
WHERE_LOV Clausula Where que se va aplicar a la lista de valores
WHERE_LOV2 Segunda Clausula Where de la lista de valores, al especificarla se va
habilitar un botdén para poder conmutar.
ETIQUETA_BOTON_WHERE Cuando se especifica WHERE_LOV2, serad la etiqueta que tenga el botén de
conmutacién cuando se estd aplicando la where normal de la lista de valores
ETIQUETA BOTON_WHERE2 Cuando se especifica WHERE _LOV2, serd la etiqueta que tenga el botdn de
conmutacién cuando se estd aplicando la segunda where de la lista de
valores
MULTISELECCION Permite activar o desactivar la multiseleccidn S, N, T

71

@M EDISA

Codigo PL/SQL

El codigo PL/SQL tiene las siguientes caracteristicas:

Se ejecuta en la base de datos, por tanto, no se puede hacer referencia a funciones y
procedimientos almacenados en librerias o en el fuente del programa.

Al ejecutarse en la base de datos, se pueden crear funciones, procedimientos y packages en la
propia base de datos ¢ introducir el codigo en cualquier lenguaje reconocido por la base de datos,
ya sea PL/SQL, Java, XML, ...

Hay dos métodos de ejecucion de codigo PL/SQL:

VO (Legacy - Se usa en versiones de Libra anteriores a la 6.1.2).

o Permite usar dentro del codigo hasta un maximo de 20 variables del propio programa de
la misma forma que si se ejecutase en un bloque PL/SQL dentro de Forms, es decir, se
pueden hacer referencia a campos de un bloque con :bloque.campo, a pardmetros con
:parameter.parametro, ... Estas referencias son de entrada / salida, es decir, si en el codigo
PL/SQL de validacion se hace una asignacion a un campo del programa esta asignacion
se vera reflejada en el programa, por ejemplo si introducimos :bloque.campo := “10’,
después de la ejecucion el campo ‘campo’ del bloque ‘bloque’ contendra el valor 10.
IMPORTANTE: Los campos de tipo DATE o DATETIME se enlazan como texto.

o Se pueden usar variables de sélo lectura que no cuentan dentro de la limitacion de las 20
variables maximas. Para indicar que la variable es de so6lo lectura hay que hacer referencia
a ella con ::, por ejemplo ::bl.codigo

o No se puede parar la ejecucion a mitad del cédigo, es decir, el codigo se ejecutara
integramente, pero se pueden encadenar coddigos PL/SQL usando :p_codigo_sql.

V1: A diferencia de VO (Legacy) tiene los siguientes cambios:

o El numero de variables a enlazar del programa es ilimitado.

o Los campos de los bloques que sean DATE o DATETIME se enlazan como DATE en
vez de como texto.

En versiones anteriores a 6.1.2 se ejecutaran en modo V1 y en 6.1.2 o posteriores en modo V2. Se puede
forzar que un determinado codigo PL/SQL se ejecute en una version u otra anadiendo al principio de todo
uno de los siguientes comentarios:

/*PLSQLVO0*/: Fuerza la ejecucion en modo VO (Legacy) en versiones 6.1.2 o posterior.
/*PLSQLV1#/: Fuerza la ejecucion en modo V1 en versiones anteriores a la 6.1.2.

Existen los siguientes parametros fijos que solo son de salida de resultados:

72

:p_parar_ejecucion: Se le puede asignar ‘S’ , ‘N’, ‘O’, “V’,'T", 'P' durante la ejecucion del codigo,
esto no implica que si asignamos el valor ‘S’ no se ejecute el codigo que hay a continuacion,
implica que si asignamos el valor ‘S’ después de haberse ejecutado la validacion PL/SQL se va a
realizar un RAISE Form_Trigger Failure y por tanto, si es un codigo de validacion, el campo va
a continuar con el estado INVALIDO.

Si asignamos el valor ‘O’ solo se parara la ejecucion si el usuario pulsa el boton de cancelar en el
mensaje que se le muestre.

Si asignamos el “V’ y el usuario pulsa cancelar en el mensaje se restablecera el valor que introdujo
originalmente el usuario en el campo (puede ser que el cddigo pl/sql lo modificase) y el campo
queda invalido, es decir, se ejecuta un RAISE Form Trigger Failure. En caso de que acepte el
mensaje continuara con el valor devuelto por el codigo PL/SQL y se valida el campo.

@M EDISA

73

Con el valor 'T' funciona exactamente igual que "V', pero si el usuario pulsa cancelar en el mensaje
se restablece el valor introducido por el usuario originalmente en el campo, pero con la diferencia
de que el campo queda validado.

Si se asigna el valor 'P', el campo o registro se valida independientemente si el usuario pulsa el
boton de aceptar o el de cancelar, pero si hay algo en p_codigo _pl_sql unicamente se ejecuta si el
usuario pulsa aceptar.

En el caso de recuperar el valor anterior, por defecto se recupera el valor que tenia el campo antes
de ejecutar el PL/SQL, si se quiere reestablecer el valor que tenia el campo a un momento anterior
a que el usuario lo modificase, se puede anadir un segundo caracter en :p_parar_ejecucion con el
valor P o D. Con el valor P recupera el valor de antes de entrar en el campo y con B el valor que
devuelve la propiedad DATABASE VALUE para ese campo. Ejemplo: :p _parar ejecucion :=
‘VP’;

:p_tipo_mensaje y :p_codigo_mensaje: Una vez finalizada la ejecucion de la validacion si tienen
valor se mostrard el mensaje correspondiente de la tabla MENSAJES. Se puede personalizar el
mensaje asignando el texto del mismo en la variable de salida :p_texto_mensaje. Es posible
reemplazar cadenas dentro del mensaje que se va a mostrar mediante llamadas a
pkpantallas.set_msg_replace_texto(cadenal, cadena2), de forma que en el proximo mensaje
que se muestre se cambia el texto indicado en “cadenal” por el que tenga “cadena2”.
:p_valor_campo_ok: Se usa en combinacién con :p_tipo_mensaje y :p_codigo_mensaje. En esta
variable se puede introducir el valor que debera de asignarse al campo que estd lanzando el
mensaje en caso de que el usuario pulse el botéon “Aceptar”.

:p_valor_campo_cancel: Se usa en combinacion con :p_tipo_mensaje y :p_codigo _mensaje. En
esta variable se puede introducir el valor que debera de asignarse al campo que esta lanzando el
mensaje en caso de que el usuario pulse el boton “Cancelar”.

:p_lv_lista_valores: Una vez finalizada la ejecucion del codigo, si este campo termina con valor,
se ejecutara la lista de valores que indique el valor, independientemente de la lista de valores que
tenga asociado el campo en el mantenimiento de programas. Si se usa en un codigo de validacion
(pre validacion o validacion) fallara si el usuario sale del campo usando el raton, para evitar este
problema debemos comprobar antes de asignarle valor si se estd ejecutado desde un disparador
KEY-NEXT-ITEM con el parametro :p_ejecutado_desde kni que contendra el valor ‘S’ si se
puede lanzar correctamente la lista de valores. En caso de querer evitar que se valide el campo sin
lanzar la lista de valores deberemos usar :p_ejecutado desde kni en combinaciéon con
:p_tipo_mensaje, :p_codigo_mensaje y :p_parar_ejecucion como se muestra en el siguiente
ejemplo:

IF :p_ejecutado_desde_kni = 'N' THEN
:p_parar_ejecucion := 'S';
:p_tipo_mensaje := 'CAMPO';
:p_codigo_mensaje := 'ENTER';

ELSE
:p_lv_lista_valores := 'CLIENTES';
:p_lv_ejecutar_consulta := 'S';

END IF;

:p_lv_ejecutar_consulta: Se usa en el caso de que :p /v _lista_valores devuelva valor, si se indica
el valor ‘S’ la lista de valores se ejecutara mostrando registros, mientras que si tiene el valor ‘N’
la lista de valores se ejecutara en modo ENTER-QUERY, es decir, en modo de entrada de filtro.
:p_lv_where: Se usa en el caso de que :p [v lista valores devuelva valor, indicara la condicion
con la que se debe ejecutar la lista de valores. Si se deja en blanco usara la where que tenga por
defecto la lista de valores.

:p_lv_consulta_bd: Se usa en el caso de que :p Iv lista valores devuelva valor, permite
modificar la SELECT que va a enviar la lista de valores a la base de datos, si este parametro no se
especifica se usara la SELECT que tenga por defecto la lista de valores.

@M EDISA

IMPORTANTE: “:p_lv_lista_valores”, “:p_lv_ejecutar_consulta”, “:p_lv_where” y
“:p_lv_consulta_bd” no afectan a las reglas de validacion del campo, es decir, inicamente se utilizan en
la ventana de la lista de valores a la hora de visualizar los valores, pero internamiente no cambia el
comportamiento del campo, para modificar la lista de valores hay que usar comandos plug-in, por ejemplo:

PKPANTALLAS.INICIALIZAR CODIGO_PLUG_IN;

PKPANTALLAS.COMANDO PLUG_IN ('PKLIBPNT_SIP', 'BLOQUE.CAMPO', 'LV_CODIGO_LISTA', 'CLIENTES');
PKPANTALLAS.COMANDO PLUG_IN ('PKLIBPNT_SIP', 'BLOQUE.CAMPO', 'LV_EJECUTAR_CONSULTA', 'S');
PKPANTALLAS.COMANDO PLUG_IN('PLUGIN', 'BLOQUE.CAMPO', 'LV_VALIDAR DESDE_LISTA', 'S');
PKPANTALLAS.COMANDO PLUG_IN ('PKLIBPNT_SIP', 'BLOQUE.CAMPO', 'LV_WHERE_DEFECTO', ':where lov AND <condicién>'");

74

:p_codigo_pl_sql: Permite que la ejecucion de un codigo PL/SQL devuelva otro PL/SQL a
ejecutar en caso de que el parametro :p_parar_ejecucion sea N, O u P y el usuario pulse aceptar el
mensaje. De esta manera podemos lanzar una pregunta y en base a la respuesta del usuario ejecutar
un proceso o no. El uso es ilimitado, es decir un :p_codigo pl sql podria devolver otro codigo y
asi ir encadenando preguntas al usuario. Ejemplo: Se pregunta al usuario si quiere borrar el
registro, si pulsa en “Aceptar” se ejecutara lo que tenga :p_codigo pl sql, si pulsa “Cancelar” no
se haréa nada.

:p_parar_ejecucion := '0';

:p_tipo_mensaje := 'COMPR';

:p_codigo_mensaje := 'TEXTOLIB';

:p_texto_mensaje := ';Desea borrar el registro?';
:p_codigo_pl sql := 'DELETE FROM tabla WHERE condicion';

:p_ejecutar_programa: Una vez finalizada la ejecucion del codigo, si este campo termina con
valor, se ejecutard el programa que indique el valor. Para pasar pardmetros al programa se
usaremos las siguientes instrucciones:
o PKPANTALLAS.INICIALIZAR_ PARAMETROS PLUG_IN: Se e¢jecuta sin
ningln parametro y solo lo ejecutaremos una vez antes de pasar ningun parametro.
o PKPANTALLAS.PARAMETRO_PLUG_IN(<parametro>, <tipo>, <valor>): Se
llamara una vez por cada parametro a pasar.
= <parametro>: Nombre del parametro que recibe el programa llamado,
este dato depende del programa al que llamemos.
= <tipo>: Le indicamos si el parametro es una constante o es una referencia a un
campo del programa. ‘C’: Constante, ‘R’: Referencia.
= <valor>: De donde va a obtener el valor del programa principal para ser pasado
al parametro del programa plug-in. Este valor depende del tipo:
e Por referencia, se puede obtener de:
o Campo, especificaremos BLOQUE.CAMPO del que
queremos obtener el valor. Este sera la opcion mas comun.
o Variable global, especificaremos GLOBAL.VARIABLE.
o De un parametro local del programa principal,
especificaremos PARAMETER.NOMBRE PARAMETRO

e Constante: Serd un valor fijo, por ejemplo ‘10002’.

Se puede hacer que al llamar a un programa con :p_ejecutar_programa se cjecute con una
determinada personalizacion asignando la personalizacion a la variable
:global.id_personalizacion:

:global.id personalizacion := 'l';

:p_ejecutar_programa := 'CONSGEN';

:p_modo_menu_prog_llamado := 'DO _REPLACE';
:p_modo_consulta prog_ llamado:= 'NO QUERY ONLY';

@M EDISA

75

Se puede hacer que al llamar a un programa dindmico se ejecute con una determinada plantilla
haciendo que se ignoren los permisos del usuario sobre esa plantilla asignado el codigo de la
plantilla a :global.forzar_plantilla:

:global.forzar _plantilla := 'NACIONALES';

:p_ejecutar_programa := 'CLIENTES';

:p_modo_menu_prog_llamado := 'DO_REPLACE';
:p_modo_consulta prog_llamado:= 'NO_QUERY ONLY';

El usuario puede tener un mismo programa en varias opciones de menu y esas opciones de menu
pueden tener algunas opciones particulares que las diferencian unas de otras, por ejemplo, en las
impresoras disponibles, para forzar que un programa se ejecute asumiendo la parametrizacion de
una determinada opciéon de menu se puede hacer asignando el codigo de la opcion de menu a
:p_ejecutar_programa, con el prefijo MN:

:p_ejecutar_programa := 'MN:2V2500000510';

:p_modo_menu_prog_llamado := 'DO_REPLACE';
:p_modo_consulta prog_llamado:= 'NO QUERY ONLY';

Se puede forzar la carga de una plantilla de valores del bloque de filtro mediante la variable
:global.id_plantilla_valores_defecto.

También se puede hacer que al ejecutar el programa ejecute algo de co6digo, por lo que se podria
hacer una llamada por plug-in a un programa que no esta preparado para ser llamado como plug-
in, el cddigo que se quiere ejecutar en el programa destino hay que pasarselo al procedimiento:
pkpantallas.set_codigo_pl_sql_inicio(<codigo>);

Ejemplo: Desde la vista 360°, en la pantalla de cliente, el codigo que habria que usar en un plug-
in para llamar al programa CONPED1 (consulta de pedidos) para que al entrar haga la consulta
del cliente que tenemos en pantalla, y ademas quite la pestafia de filtros para que no se pueda
cambiar la consulta.

:p_ejecutar_programa := 'conpedl';
:p_modo_menu_prog_llamado := 'DO_REPLACE';
:p_modo_consulta prog_ llamado:= 'NO QUERY ONLY';
PKPANTALLAS.SET_CODIGO PL SQL INICIO('PKPANTALLAS.INICIALIZAR CODIGO_PLUG_IN;
PKPANTALLAS.COMANDO_PLUG_IN(''COPY'', e || :bcliente.v_codigo_rapido Il e,
''B1.DESDE_CLIENTE'');
PKPANTALLAS.COMANDO_PLUG_IN(''COPY'', e || :bcliente.v_codigo_rapido Il e,
''B1.HASTA CLIENTE'');
PKPANTALLAS.COMANDO PLUG_IN(''VALIDATE'', ''RECORD_SCOPE'');
PKPANTALLAS.COMANDO PLUG_IN(''SYNCHRONIZE'');
PKPANTALLAS.COMANDO PLUG_ IN(''EXECUTE TRIGGER'', ''CONSULTAR'');

(

PKPANTALLAS.COMANDO_PLUG_IN
' 'PROPERTY_FALSE'');');

''sTPP'', ' 'CANVAS_BASE.TABO'', '"'VISIBLE'',

También se puede utilizar para llamar a un Report, para ello hay que indicar la extension .REP,
por ejemplo: :p_ejecutar_programa = 'informe.rep's. Con
PKPANTALLAS.INICIALIZAR PARAMETROS PLUG IN y
PKPANTALLAS.PARAMETRO_PLUG IN se le pueden pasar parametros al informe.

Para indicar por donde imprimir el informe se puede utilizar (ver apartado: Impresion
Multidestino) PKPANTALLAS.INICIALIZA MULTIDESTINO_REPORT y
PKPANTALLAS.ADD_MULTIDESTINO_REPORT. En el caso de no indicar el destino se
abrird la pantalla tipica de seleccion de destino de impresion.

@M EDISA

76

Sino se indica un destino se abrird una pantalla donde el usuario debera indicar si quiere el informe
por pantalla, impresora, etc. Al seleccionar por impresora saldran tanto las impresoras marcadas
como horizontales como las marcadas verticales, este comportamiento se puede modificar:

e Para forzar que TUnicamente salgan las verticales hay que ejecutar:
PKPANTALLAS.SET VARIABLE ENV(IMP TIPO IMPRESORA' 'V");

e Para forzar que Uunicamente salgan las horizontales hay que ejecutar:
PKPANTALLAS.SET VARIABLE ENV(IMP TIPO IMPRESORA' 'H");

:p_modo_menu_prog llamado: Se wusa s6lo si se ha especificado valor para
:p_ejecutar_programa. Indica si al llamarse el programa se debe de mantener el menu del
programa llamador en el programa llamado o que este inicialice su propio menu. Valores posibles:

o NO_REPLACE: (Valor por defecto, si no se especifica esta variable asumira este valor).
Se mantiene el menu del programa llamador en el programa Illamado.

o DO_REPLACE: Se¢ inicializa el menu del programa llamado.
:p_modo_consulta_prog llamado: Se wusa so0lo si se ha especificado valor para
:p_ejecutar_programa. Indica si al llamarse al otro programa se va a hacer en modo de solo
consulta o no.

o QUERY_ONLY: (Valor por defecto, si no se especifica esta variable asumira este valor).

En el programa llamado solo se podran ejecutar consultas, nunca modificacion de datos.

o NO_QUERY_ONLY: En el programa llamado se pueden modificar datos.
:p_esperar_fin_programa_llamado: Valores posibles:

o N: (:p_esperar_fin_programa_llamado := 'N';). Se utiliza para indicar que el programa
llamador no debe de quedar a la espera de que termine el programa llamado. En caso de
activar esa opcion el programa llamado funciona igual que si el usuario fuese por ventanas
y lo abriese desde el ment, es decir, el programa llamador continda su ejecucion, la
conexion a la base de datos es distinta para cada programa. El inconveniente principal es
que el programa llamado no puede devolver valores al programa llamador y tampoco
puede compartir variables de sesion de la base de datos, y como ventaja se evita el
mensaje “No se puede iniciar otra llamada a pantalla” cuando el usuario tiene varios
programas llamados de forma concurrente.

o S (:p_esperar_fin_programa_llamado := 'S';). El programa llamador se queda a la
espera de que termine la ejecucion del programa llamado. Si no se indica nada en esta
variable este es el valor por defecto que asume. Es importante tener en cuenta que cuando
se deshabilita que se espere por el programa llamado se ejecuta OPEN_FORM y Oracle
Forms no ejecutard nada mas a partir de ese momento ya que el control pasa totalmente
al programa llamado, si se requiere que una vez se ejecute el programa se continue
ejecutando cddigo no se puede utilizar esta opcion.

o H: (:p_esperar fin _programa_llamado := 'H';). Funciona de la misma forma que el
valor S, pero con la diferencia de que se le indica al programa llamador que debe de
ocultarse. Esto es especialmente util cuando el codigo PL/SQL se ejecuta cuando hay una
ventana modal abierta en el programa llamador, ya que si se indica el valor S la ventana
quedara por encima del programa llamado y quedara Libra bloqueado.

:global.call_form_modo_post: Si se pasa el valor S, en el programa llamado no se podra realizar
un COMMIT, el usuario podra modificar datos pero estos no seran grabados hasta que no salga
del programa y grabe en el programa llamador.

@M EDISA

Hay pardmetros fijos que s6lo son de entrada. Estos parametros son los siguientes:

e :p_tipo_programa: Tendrd el valor del campo Tipo de Programa del mantenimiento de
programas.

e :p_validar_desde lista: Tendra el valor del campo Validar desde Lista de Valores.

e :p_ejecutado_desde_kni: Contendra el valor ‘S’ si el codigo se esta ejecutando por la accion de
usuario de pulsar ENTER o TAB sobre el campo, en otro caso tendra el valor ‘N’.

e NAME_IN(‘SYSTEM.TRIGGER ITEM’): Es sustituido por el contenido de la variable de
sistema :system.trigger item. NOTA: Tiene que estar escrito todo en mayusculas, es decir,
name_in(‘SYSTEM.TRIGGER ITEM’); no sera sustituido.

e Se pueden pasar variables entre cédigos PL/SQL, mediante funciones SET VARIABLE ENV 'y
GET VARIABLE ENV definidas en el paquete PKPANTALLAS, para mas informacion ver en
el apartado: Variables y pardmetros globales, la seccion: Definibles dinamicamente.

En los bloques PL/SQL se puede controlar el resultado de la ejecucion de las listas de valores con las
siguientes funciones:

e pkpantallas.get_valor_ultima_ejecucion_lov('CAMPO'): Devuelve el nombre del ultimo
campo que ha ejecutado una lista de valores en formato BLOQUE.CAMPO.

e pkpantallas.get_valor_ultima_ejecucion_lov("ROWID'): Devuelve el rowid del ultimo registro
seleccionado por lista de valores, si la tltima ejecucion de la lista de valores se cancel6 devolvera
NULL.

e pkpantallas.get valor_ultima_ejecucion_lov("VALOR_RETORNADO"): Devuelve el ultimo
codigo del ultimo registro seleccionado por lista de valores, si la Gltima ejecucion de la lista de
valores se cancel6 devolvera NULL.

Ejemplos:
IF :campos.divisa etiqueta IS NOT NULL AND :campos.doble etiquetaje IS NOT NULL THEN
IF :campos.divisa_etiqueta = 'EUR' AND :campos.doble_etiquetaje = 'l' THEN
:campos.doble_etiquetaje := '2';
:p_parar_ejecucion := 'S';
:p_tipo_mensaje := 'CAMPO';
:p_codigo_mensaje := 'TEXTOLIB';
:p_texto mensaje := 'Si la divisa es EUR no se permite el primer valor';
ELSIF :campos.divisa_etiqueta <> 'EUR' AND :campos.doble etiquetaje <> 'l' THEN
:campos.doble_etiquetaje := 'l';
:p_parar_ejecucion := 'S';
:p_tipo mensaje := 'CAMPO';
:p_codigo_mensaje := 'TEXTOLIB';
:p_texto mensaje := 'Si la divisa no es EUR el unico valor permitido es el primero';
END IF;
END IF;
Ejemplo con NAME IN(‘SYSTEM.TRIGGER _ITEM’):
NAME _IN('SYSTEM.TRIGGER ITEM') 1= PKVALIDACIONES.COMPRUEBAiARTICULO(:global.codigoiempresa,
NAME_IN('SYSTEM.TRIGGER ITEM'), TO DATE(:global.fecha trabajo, :global.nls_date format), :p_tipo_programa,
:global.usuario, :global.superusuario, :p_parar_ejecucion, :p_tipo_mensaje, :p_codigo_mensaje,

:p_texto _mensaje);

Lo que realmente ejecutara este codigo si el contenido de :system trigger item es :b3.codigo_articulo, y el
tipo de programa es CONSULTA:

:b3.codigo_articulo 1= PKVALIDACIONES.COMPRUEBA ARTICULO (:global.codigo_empresa, :b3.codigo_articulo,
TO_DATE (:global.fecha trabajo, :global.nls date format), ‘CONSULTA’, :global.usuario, :global.superusuario,
:p_parar_ejecucion, :p_tipo mensaje, :p_codigo _mensaje, :p_texto_mensaje);

Ejemplo de lanzamiento de lista valores.

IF :bl.tipo_entidad = ‘PR’ THEN

:p_lv_lista _valores := ‘PROVEEDORES’;

:p_lv_ejecutar_consulta := ‘S’;

:p_lv_where := ‘codigo_empresa = :global.codigo_empresa AND nivel legal = ‘/S’’'’;
ELSE

:p_lv lista valores := ‘CLIENTES’;

:p_lv_ejecutar consulta := ‘S’;

:p_lv _where := ‘codigo empresa = :global.codigo empresa AND nivel legal = ‘/S’'’;
END IF;

77

@M EDISA

Generacion de hojas de célculo desde cédigos PL/SQL

Se permite generar desde los codigos PL/SQL, para ello se usa el paquete PKXLSBD de la misma forma
que el paquete PKXLS que se explica en el apartado: Generacion de hojas de calculo.

Ejecutar operaciones de Forms desde PL/SQL de Libra.

Un cédigo PL/SQL puede devolver ciertas operaciones que se ejecutaran en el programa, como por ejemplo
cambiar propiedades de campos, mover el cursor de campo, ejecutar triggers, ...

Las operaciones que se ejecutaran en Forms seran ejecutadas secuencialmente, no hay opcion a tomar
decisiones (salvo alguna pequefia excepcion) por el medio de ellas, ni realizar bucles.

Para ello en el PL/SQL hay que ejecutar las siguientes instrucciones:

o PKPANTALLAS.INICIALIZAR_CODIGO_PLUG_IN: Sélo se ejecutara una vez, e indicamos
donde comenzamos a introducir las instrucciones a ejecutar en el programa.
o PKPANTALLAS.COMANDO_PLUG_IN(<operacion>, [parametrol], [parametro2],
[parametro3]);
e <operacion>: Ver tabla de operaciones.
e [parametrol, 2 y 3]: Opcional, y es obligatorio especificarlo si en la tabla de operaciones lo usa la
instruccidn que se ejecuta.

Estas llamadas también se pueden hacer en un plug-in y se ejecutaran en el programa llamador cuando se
cierre el programa llamado.

Puede haber operaciones que den problemas si se usan en un codigo de validacion (prevalidacion o
validacion) si el usuario sale del campo usando el raton, para evitar este problema (cuando se use una de
esas operaciones) se puede comprobar si se esta ejecutando desde un disparador KEY-NEXT-ITEM con el
parametro :p_ejecutado_desde_kni que contendra el valor ‘S’. En caso de querer evitar que se valide el
campo sin ejecutar nada deberemos usar :p_ejecutado_desde kni en combinacion con :p_tipo_mensaje,
:p_codigo_mensaje y :p_parar_ejecucion.

Operaciones soportadas:

Operacién Ejecuta
COPY COPY (parametrol, parametro2)
DEFAULT_ VALUE DEFAULT7VALUE(parametrol, parametro2)
GoilTEM GOilTEM(parametrol)
GO_BLOCK GO_BLOCK (parametrol)
GO_RECORD GO_RECORD (parametrol)
DO_KEY DO_KEY (parametrol)
EXECUTE_TRIGGER EXECUTE_TRIGGER (parametrol)
MSGiREPLACEiTEXTO MSG.REPLACEiTEXTO(parametrol, parametro2)
ALERTA MSG.ALERTA PERSONAL (parametrol, parametro2, parametro3)
VALIDATE VALIDATE (parametrol) . Ver en la ayuda de Forms, los valores que recibe el built-

in VALIDATE.

ERASE ERASE (parametrol)
IF_FF_RFTF IF Form Failure THEN
RAISE Form Trigger Failure;
END IF;
FF RAISE Form Trigger Failure;
HOST HOST (parametrol) & HOST (parametrol, parametro2);
HOST_CLIENT Ejecuta la aplicacidén indicada en parametrol en el equipo cliente. Si se utiliza

en cliente / servidor, tiene el mismo funcionamiento que el comando “HOST”.

78

@M EDISA

REFRESCAR_ BLOQUE

Vuelve a ejecutar consulta en el bloque en que se encuentra el cursor, respetando
los filtros aplicados por el usuario y vuelve a posicionarse en el mismo registro
y campo en el que se encontraba el cursor.

SELECT_ALL

Selecciona todo el texto del campo. Se podria meter en el PL/SQL de entrada en
campo de los campos multilinea para forzar que se seleccione todo el texto
siempre al entrar.

CURSOR_STYLE

Set_Application_Property(CURSOR_STYLE, parametrol);

SIP Set_Item Property(parametrol, parametro2, parametro3).Ver en la ayuda de Forms,
los valores que recibe el built-in Set_Item Property.

SBP Set_Block Property(parametrol, parametro2, parametro3).Ver en la ayuda de
Forms, los valores que recibe el built-in Set_Block_Property.

SFP Set_Form Property(parametrol, parametro2, parametro3).Ver en la ayuda de Forms,
los valores que recibe el built-in Set_ Form Property.

SIIP Set_Item Instance Property(parametrol, parametro2, parametro3).Ver en la ayuda
de Forms, los valores que recibe el built-in Set Item_Instance_ Property.

SRBP Set_Radio Button_ Property(parametrol (*), parametrol (*), parametro2,
parametro3) . (*) En el pardmetro 1 tiene que ponerse de la forma
BLOQUE.CAMPO.ELEMENTO, BLOQUE.CAMPO se usard en el primer pardmetro de
Set_Radio_ Button_ Property y ELEMENTO en el segundo. Ver en la ayuda de forms
los valores que recibe el built-in Set_Radio_ Button_ Property.

STPP Set_Tab_Page_ Property(parametrol, parametro2, parametro3).Ver en la ayuda de
Forms, los valores que recibe el built-in Set Tab Page Property.

SWP Set_Window_Property(parametrol, parametro2, parametro3).Ver en la ayuda de
Forms, los valores que recibe el built-in Set Window_ Property.

SMIP Set_Menu_Item Property(parametrol, parametro2, parametro3).Ver en la ayuda de
Forms, los valores que recibe el built-in Set Menu Item Property.

SCP Set_Canvas_Property(parametrol, parametro2, parametro3).Ver en la ayuda de
Forms, los valores que recibe el built-in Set_Canvas_Property.

SVAP Set_Va_Property(parametrol, parametro2, parametro3). Ver en la ayuda de Forms,
los valores que recibe el built-in Set Va Property.

FITEM Pardmetrol puede ser uno de los siguientes: VISIBLE, ACTIVADO, MODIFICABLE,
OBLIGATORIO. Pardmetro2 el campo que se quiere modificar. Pardmetro3: S o N.

POSTEAR POSTEAR;

CENTRA_VENTANA

CENTRA_VENTANA (parametrol) ;

PKLIBPNT_SIP

DISPSTD.SET_PROPIEDAD (parametrol, parametro2, parametro3) . Ver apartado
Modificar por cédigo las propiedades cargadas del mantenimiento de programas.

PKLIBPNT_ SBP

DISPSTD.SET_ PROPIEDAD (parametrol, parametro2, parametro3, 'B'). Ver apartado
Modificar por cédigo las propiedades cargadas del mantenimiento de programas.

PKLIBPNT_SPP

DISPSTD.SET_PROPIEDAD (parametrol, parametro2, parametro3, 'P'). Ver apartado
Modificar por cdédigo las propiedades cargadas del mantenimiento de programas.

PKLIBPNT SPI

DISPSTD.SET_ PROPIEDAD (parametrol, parametro2, parametro3, 'PI'). Ver apartado
Modificar por cdédigo las propiedades cargadas del mantenimiento de programas.

PKLIBPNT IMP

IMP.SET_PROPIEDAD (parametrol, parametro2). Ver apartado Modificar por cdédigo
las propiedades cargadas del mantenimiento de programas.

PKLIBPNT LV

LV.SET_PROPIEDAD (parametrol, parametro2). Ver apartado Modificar por cdédigo las
propiedades cargadas del mantenimiento de programas.

KEY F

Ejecuta el plug-in que tenga asignada la tecla radpida indicada en parametrol

EJECUTA_PLUG_IN

Ejecuta el plug-in con cdédigo indicado en pardmetro2 en el bloque indicado en
parametrol. NOTA: Se ejecuta independiente de si el usuario tiene permisos o
no sobre el PLUG-IN. Si se utiliza esta opcidén quiere decir que se ya se ha
validado que el usuario puede realizar la ejecucidn.

SYNCHRONIZE

SYNCHRONIZE

GET_XML

Genera en el ordenador cliente un archivo XML con ruta y nombre indicada en
parametrol (se pueden utilizar los mismos modificadores de nombre de archivo
que GET_FILE_TXT) con el XML inicializado anteriormente con
pk_xml.init_linea xml o con pk_xml.init linea_xml_sql.

GET XML _IAS

Genera en el servidor de aplicaciones un archivo xml con ruta y nombre indicada
en parametrol con el xml inicializado anteriormente con pk xml.init linea xml
o con pk xml.init linea xml sql.

79

@M EDISA

GET_FILE_TXT

Genera en el ordenador cliente los archivos de texto con sus lineas
correspondiente que se han ido almacenando mediante
PKPANTALLAS.ADD_LINEAS_FICHERO. Ver apartado: Generar archivos de texto en
ordenador cliente desde cédigo PL/SQL.

GET_FILE_TXT_IAS

Genera en el servidor de aplicaciones los archivos de texto con sus lineas
correspondiente que se han ido almacenando mediante
PKPANTALLAS.ADD_LINEAS FICHERO. Ver apartado: Generar archivos de texto en
ordenador cliente desde cédigo PL/SQL.

ACTIVA_PLUG_IN

Se usa para activar o desactivar un plug-in de un bloque, en parametrol se
indicard BLOQUE.CODIGO PLUGIN y en parametro2 se indicard S para activarlo y N
para desactivarlo.

DELETE_RECORD

DELETE_RECORD;

CLEAR_RECORD

CLEAR_RECORD;

CLEAR_BLOCK

CLEAR_BLOCK (parametrol) ;

CLEAR_LIST CLEAR_LIST (parametrol) ;. Permite borrar el contenido de un LIST-ITEM.
Parametrol identifica el campo a borrar con BLOQUE.CAMPO

DLE Delete_List_ Element (parametrol, parametro2);. Permite borrar unicamente un
elemento del list-item. Parametrol identifica el ~campo a borrar con
BLOQUE.CAMPO y parametro2 es el numero de elemento a borrar.

Si se borran mas de uno hay que tener en cuenta que por cada borrado los
elementos se renumeran.

ALE Add_List_Element (parametrol, NVL(TO_ NUMBER (Get List ElementCount (parametrol)),
0) + 1, parametro2, parametro3);. Afade al final de la lista un nuevo elemento.
Parametrol identifica el con BLOQUE.CAMPO y parametro2 es el texto que se le
mostrard al usuario cuando seleccione la opcidn y parametro3 es el valor interno
que contendréd el campo cuando el usuario seleccione la opcidn.

PL POPULATE_LIST. Parametrol identifica el campo a borrar con BLOQUE.CAMPO vy
parametro2 es la sgl que debe de usarse para rellenar la lista de valores. La
sql debe de sacar uUnicamente 2 campos, el primero serd el texto que verda el
usuario al seleccionar el elemento y el segundo campo el cdéddigo interno que
tendrd el campo cuando el usuario seleccione el elemento.

PLSQL Ejecuta el cdédigo pl/sgl pasado en Parametro 1.

SCUSP Set_Custom_ Property(parametrol, 1, parametro2, parametro3)

WWW Abre la web pasada por pardmetro en v_parametrol en el navegador

TXT2VOZ Exclusivo ment nuevo, es decir no disponible en mend legacy: Usa el sintetizador
de voz del navegador para reproducir el texto que se pasa en parametrol.

START Visualiza el archivo indicado en pardmetrol y que debe de encontrarse en el
ordenador que ejecuta Libra

SHOW_VIEW SHOW_VIEW (parametrol)

DESCARGA_ARCHIVO

Permite especificar tanto el nombre del archivo como el filtro de tipo de
archivo que se mostrard en el selector, mediante sus dos primeros parametros.
Su principal utilidad es habilitar la descarga de archivos generados desde
cdédigo PL/SQL, especialmente en programas de mantenimiento donde no es posible
incluir esta funcionalidad directamente en el FMB.

Ejemplo:

-- Generar vy cargar el archivo SQL en PK_BLOB2BD
pk_gal inarchstrd bbdd.generar sql(:bl.codigo, FALSE) ;

-- Inicializar y ejecutar la descarga del archivo al equipo del usuario
pkpantallas.inicializar_codigo_plug_in;
pkpantallas.comando_plug_in('DESCARGA ARCHIVO', :bl.codigo || '.sql', 'SQL
(*.sql) [*.sqll");

Ejemplo de activacion/desactivacion de plug-in desde PL/SQL

PKPANTALLAS.INICIALIZAR CODIGO_PLUG_IN;

IF :bl.cli codigo = '0005"' THEN

PKPANTALLAS.COMANDO PLUG_IN('ACTIVA_ PLUG_IN', 'BCLIENTE.CL', 'N');
ELSE

PKPANTALLAS.COMANDO PLUG_IN('ACTIVA PLUG IN', 'BCLIENTE.CL', 'S');
END IF;

80

@M EDISA

Generar archivos de texto en ordenador cliente o servidor de aplicaciones desde PL/SQL

Para generar un archivo de texto desde codigo PL/SQL primero hay que almacenar los datos de cada archivo
que se quiere generar en la base de datos mediante las siguientes funciones del paquete pkpantallas:

e pkpantallas.incializa_lineas_fichero: Se ejecuta una sola vez e inicializa las estructuras internas
del paquete pkpantallas para almacenar los datos para generar los ficheros.

e pkpantallas.add_lineas_fichero(<tipo>, <archivo_o_linea>): Se usa tanto para indicar el
nombre del archivo y la ruta como las lineas de texto que va a contener. Recibe dos parametros,
en el primer parametro <tipo> indica si en el segundo parametro <archivo_o_linea> se estd
pasando el nombre del archivo o de la linea de texto que va a contener el archivo. Obligatoriamente
la primera vez que llama se tiene que pasar un nombre del archivo y las siguientes lineas que se
afladiran a ese archivo, una vez se cambie el archivo se cierra el anterior y las nuevas lineas se
afiaden al nuevo.

Al indicar el nombre de archivo se le pueden afiadir modificadores (exclusivo version Forms 12¢)
concatenandolos al nombre del archivo con el separador “:MOD:”. Puede haber mas de un
modificador, en ese caso se separan por comas. (ver ejemplo). Los modificadores disponibles son:
e GET _FILE NAME: Se abre el selector de archivo para indicar en donde y con que
nombre se grabara el archivo. En el selector se propone el nombre de archivo indicado.
Por defecto se considera que el archivo tiene extension .txt, si fuese otra extension se
puede indicar la cadena de extensiones del selector de archivos afiadiendo : y la cadena,
por ejemplo, para archivos .log seria: LOG (*.log)|*.1og|All Files (*.*)|*.*|
e DOS: Fuerza a que los saltos de linea sean para equipos Windows.
e CODIFICACION:WESISO8859P1: Codifica en formato ANSI el archivo de texto en
vez de UTF-8.

Para generar finalmente el archivo hay que llamar a GET FILE TXT. Ver apartado: Ejecutar operaciones
de Forms. Ejemplo:

pkpantallas.inicializa_ lineas_fichero;

pkpantallas.add lineas_fichero('F', 'ficherol.log:MOD:GET_ FILE_NAME:LOG (*.log) | *.log|All Files
(*.*)|*.*|,DOS,CODIFICACION:WE8ISO8859P1");

pkpantallas.add _lineas_fichero('L', 'LINEALl');

pkpantallas.add lineas_fichero('L', 'LINEA2');

pkpantallas.add lineas_fichero('F', 'c:\temp\fichero2.txt');

pkpantallas.add _lineas_fichero('L', 'LINEALl');

PKPANTALLAS.INICIALIZAR CODIGO_PLUG_IN;
PKPANTALLAS.COMANDO PLUG_IN('GET FILE TXT');

Si el archivo se quiere almacenar en el servidor de aplicaciones en vez del equipo del usuario que ejecuta
Libra, en vez de usar el comando GET FILE TXT se usara el comando GET FILE TXT IAS, en este
caso los modificadores del nombre de archivo seran ignorados y en el nombre de archivo debe de indicarse
la ruta completa en el servidor de aplicaciones.

Generar archivos XML en ordenador cliente o servidor de aplicaciones desde cédigo pl/sql.

Para generar un archivo de texto desde codigo PL/SQL primero hay que inicializar en el paquete PK_ XML
el archivo XML a descargar pasando una variable de tipo XMLTYPE a PK_ XML.INIT LINEA XML o
pasando una consulta que devuelva un XMLTYPE en PK_XML.INIT LINEA XML SQL.

Para ejecutar la descarga se realizard con el comando plug-in GET XML (Ver apartado: Ejecutar
operaciones de Forms), en el primer parametro del comando se indicara el nombre de archivo que puede
tener los mismos indicadores que los indicados para GET FILE TXT.

Ejemplo:
pk_xml.init_ linea xml_sqgl ('SELECT XMLELEMENT ("elementoraiz", XMLAGG (XMLELEMENT ("cliente",
XMLELEMENT ("codigo", codigo_rapido), XMLELEMENT ("nombre", nombre), XMLELEMENT ("direccion", direccion)))) FROM

clientes WHERE ROWNUM <= 3'");
PKPANTALLAS.INICIALIZAR CODIGO_PLUG_IN;
PKPANTALLAS.COMANDO PLUG IN('GET XML', '3clientes.xml:GET FILE NAME');

81

@M EDISA

Si el archivo se quiere almacenar en el servidor de aplicaciones en vez del equipo del usuario que ejecuta
Libra, en vez de usar el comando GET XML se usard el comando GET XML IAS, en este caso los
modificadores del nombre de archivo seran ignorados y en el nombre de archivo debe de indicarse la ruta
completa en el servidor de aplicaciones.

Leer propiedades de objetos del programa desde cddigo PL/SQL.

Desde el codigo PL/SQL se pueden leer las propiedades de Item, Block, Window, Form, Canvas, Tab,
Menu, Item Instance. Para ello se usara lo siguiente:

:XXX:<objeto>:<propiedad>

e XXX: Indica el tipo de objeto del que se quiere obtener la propiedad:
GBP: Bloque (Get_Block Property).

GIP: Item (Get_Item_Property).

GWP: Window (Get_ Window_Property).

GFP: Form (Get_Form_Property).

GCP: Canvas (Get_Canvas_Property).

GTP: Tab (Get_Tab_Page Property).

GMP: Menu (Get_Menu_Item_Property).

GII: Item Instance (Get_Item Instance Property).

GCU: Get_Custom_Property.

GLL: Get List Element Label. Siel <propiedad> es '0' o no se indica, devolvera el texto
del elemento actualmente seleccionado.

O O O O O O O O O O

Para saber las propiedades disponibles en cada uno de los objetos es recomendable consultar la ayuda de
Forms Builder para mas informacion.

NOTA: Los valores de las propiedades son las que tenia en objeto justo antes de ejecutarse el codigo
PL/SQL.

Ejemplo: Se lee la propiedad DEFAULT WHERE del bloque CAMPOS y luego se le asigna al mismo
bloque, pero afadiendo la condicion AND estado = 'ESPA'

PKPANTALLAS.INICIALIZAR CODIGO_PLUG_IN;
PKPANTALLAS.COMANDO PLUG_IN('SBP', 'CAMPOS', 'DEFAULT WHERE', :GBP:CAMPOS:DEFAULT WHERE || ' AND estado =
''ESPA''");

Gestionar los registros seleccionados por el usuario.

A nivel de bloque se puede activar la check “Habilitar seleccion de registros™, si esta activada esa check el
usuario puede seleccionar varios registros de forma simultanea en un bloque. Desde los codigos PL/SQL
se puede acceder a los registros seleccionados por el usuario mediante las siguientes funciones:

e PKPANTALLAS.GET_REGISTROS_SELECCIONADOS: Devuelve un array de tipo
PKPANTALLAS.TABLA REGISTROS BLOQUE, en este array habra una entrada por cada
registro que selecciono el usuario.

e PKPANTALLAS.GET_VALOR_CAMPO_SELEC_VARCHAR2: Devuelve el valor de un
campo VARCHAR2 de uno de los registros seleccionados, para ello recibe los siguientes
paradmetros:

o p_id: Numero de registro dentro del array devuelto por
PKPANTALLAS.GET REGISTROS SELECCIONADOS.

o p_campo: Nombre del campo del que se quiere recoger el valor. IMPORTANTE:
Unicamente se guarda el contenido de aquellos campos que estan en el grid, si hay
campos que tienen el n°® de registros visualizados a 1 no se guardara su valor.

e PKPANTALLAS.GET VALOR _CAMPO_SELEC_NUMBER: Igual que
PKPANTALLAS.GET VALOR CAMPO SELEC VARCHAR?2, pero para campos numericos.

e PKPANTALLAS.GET _VALOR_CAMPO_SELEC_DATE: Igual que
PKPANTALLAS.GET VALOR CAMPO_SELEC VARCHAR2, pero para campos de tipo
fecha.

82

EDISA

PKPANTALLAS.GET_VALORES_CAMPO_SELEC_NUMBER: Devuelve el valor de un
determinado campo numérico en un array de tipo PKPANTALLAS.NUMBER TABLE para
todos los registros. Es util para cuando solo interesa el valor de un campo de todos los registros.
PKPANTALLAS.GET_VALORES_CAMPO_SELEC_VCH2: Devuelve el valor de un
determinado campo en un array de tipo PKRPANTALLAS.VARCHAR2 TABLE para todos los
registros. Es util para cuando solo interesa el valor de un campo de todos los registros.

Ejemplo:

DECLARE

v_registros PKPANTALLAS.TABLA REGISTROS_BLOQUE;

v_id
BEGIN

PLS_INTEGER;

v_registros := PKPANTALLAS.GET_REGISTROS_SELECCIONADOS () ;

IF v_registros.COUNT = 0 THEN
PKPANTALLAS.LOG ('NO HAY REGISTROS SELECCIONADOS') ;

ELSE
v_id

:= v_registros.FIRST;

WHILE v_id IS NOT NULL LOOP
PKPANTALLAS.LOG ('CAMPO SELECCIONADO: ' |

PKPANTALLAS .GET_VALOR_CAMPO_SELEC_VARCHAR2 (v_id, 'CAMPO') || ', LV: ' ||
PKPANTALLAS.GET_VALOR_CAMPO_SELEC_VARCHAR2 (v_id, 'LV_CODIGO_LISTA'));
v_id := v_registros.NEXT(v_id);
END LOOP;
END IF;

END;

Busqueda contextual

En el programa de personalizar estética por usuario (u_mconfig) y empresa (u_mconem) hay dos checks:

Lista de valores automatica donde sea posible: Si se activa esta check cuando el usuario pulsa
ENTER en un campo obligatorio que estd vacio y que tiene lista de valores en el mantenimiento
de programas la lanza de forma automatica.

Lista de valores contextual donde sea posible: Si activamos esta check y el campo tiene lista de
valores y validar desde lista de valores en el mantenimiento de programas se intentara validar (solo
cuando el usuario sale del campo pulsando ENTER, si lo hace con el raton se sigue haciendo como
hasta ahora) el campo de la siguiente forma:

o Primero haciendo una buisqueda exacta por cédigo, es decir, si es una organizacion
comercial, buscando aquella que el codigo coincida exactamente con lo que ha tecleado
el usuario.

o Busqueda con LIKE por codigo sustituyendo espacios por % (también se pueden poner
%) y afiadiendo siempre un % al final, en el ejemplo de la organizacién comercial, si el
usuario teclea 1 y no hay ninguna organizacion comercial con codigo 1 (ya se validaria
por el punto anterior) buscaria con LIKE codigo ‘1%, si solo hay una que cumpla la
condicion ya la validaria y si hay varias lanzara la lista de valores con los coincidentes.

o Busqueda con LIKE por descripcion o por los campos de la lista de valores que tengan
marcada la check “Busqueda Contextual”. Si hay un Unico registro que cumpla la
condicion ya lo valida y si hay varios que la cumplen lanza la lista de valores con los
coincidentes.

Para que esto funcione bien cuando se personalice el disparador KEY-NEXT-ITEM en vez de usar
VALIDATE(ITEM_SCOPE) usaremos DISPSTD.VALIDATE ITEM, por ejemplo, si queremos que al
validar un campo con el teclado el cursor nos salte a otro bloque haremos lo siguiente:

DISPSTD.VALIDATE ITEM;
GO_BLOCK (*‘BLOQUE") ;

83

@M EDISA

Habilitar y Deshabilitar opciones de menu (Paquete FMENU)
Mediante el codigo genérico del formulario base ya se realizan las siguientes operaciones con el meni:

e Siel programa tiene bloque BREPORT, es decir que tiene listado se activa el botdn de imprimir,
en caso contrario se deshabilita.

e Si nos situamos un registro cuyo bloque que tenga la propiedad Borrado permitido a NO,
deshabilita el boton de borrar registro, en caso contrario lo habilita.

e Sinos situamos en un bloque que tenga en la propiedad Insercion Permitida a NO se deshabilitan
los botones de crear registro y duplicar registro.

e Sinos situamos en un bloque que tenga en la propiedad Consulta Permitida a NO se deshabilitan
los botones de entrada consulta y ejecucion consulta, en caso contrario se habilitan.

e Sinos situamos en un bloque que tenga bloques detalle se habilita el botéon de bloque siguiente.

e Sinos situamos en un bloque que tenga un bloque padre se habilita el boton de bloque anterior.

e Siel campo tiene asociado programa para llamada directa se habilita el boton de llamada directa,
en caso contrario se deshabilita.

e Siel campo tiene lista de valores, calendario o calculadora se habilita el boton de lista de valores,
en caso contrario se deshabilita.

e Si nos situamos en un bloque que tenga asociada la clase BLOQUE BLOQUE REG_UNICO y
por tanto tenga como atributo visual de registro actual el BLOQUE REGISTRO UNICO se
deshabilitan los botones de primer y Gltimo registro y de siguiente y anterior registro. También
lleva asociado que se deshabilitan los disparadores KEY UP y KEY DOWN.

Con estos casos se cubre la practica totalidad de los casos en donde hay que habilitar y deshabilitar opciones
de ment y botones de la botonera, pero en caso de ser necesario actuar sobre alguno de ellos para habilitar
o deshabilitar se usara el paquete FMENU de la libreria PKLIBPNT.

NOTA: Para cambiar la propiedad de borrado permitido, modificacion permitida segiin una condicion, es
mejor usar el disparador PRE-RECORD en vez del WHEN-NEW-RECORD-INSTANCE ya que si el
usuario navega a otro registro con el raton y pulsa en un campo de tipo check o botén de radio cambia su
valor antes de saltar el disparador WHEN-NEW-RECORD-INSTANCE.

Toda activacion y desactivacion de menus se debe de realizar mediante el paquete FMENU que tiene los
siguientes procedimientos:

. FMENU.IMPRIME(<parametro>): Boton de imprimir.

. FMENU.CONSULTAR (<parametro>): Boton de consultar (monitor).

e FMENU.GRAFICO(<parametro>): Boton de graficos.

. FMENU.LOV(<parametro>): Boton de listas de valores.

e FMENU.BLOQUE_ SIGUIENTE(<parametro>): Boton de bloque siguiente.

e FMENU.BLOQUE_ANTERIOR(<parametro>): Boton de bloque anterior.

e FMENU.GRABAR(<parametro>): Boton de grabar.

. FMENU.DUPLICAR(<parametro>): Boton de duplicar registro.

. FMENU.EDITAR (<parametro>): Boton de editar campo.

e FMENU.BORRAR(<parametro>): Boton de borrar registro.

e FMENU.PRIMER REGISTRO(<parametro>): Boton para navegar al primer registro del bloque.
. FMENU.ULTIMO_ REGISTRO(<parametro>): Boton para navegar al Gltimo registro del bloque.
. FMENU.SIGUIENTE REGISTRO(<parametro>): Boton para avanzar al siguiente registro.

. FMENU.ANTERIOR REGISTRO(<parametro>): Boton para retroceder al registro anterior.

e FMENU.LLAMADA (<parametro>): Boton de hipervinculo a otro programa.
FMENU.ENTER_QUERY (<parametro>): Boton de entrada de consulta.
FMENU.EXECUTE QUERY (<parametro>): Boton de ejecutar consulta.
FMENU.SALIR(<parametro>): Boton de salir del programa.
FMENU.CREAR_REGISTRO(<parametro>): Boton para crear registro nuevo.

. FMENU.EXCEL(<parametro>): Boton de envio de contenido del bloque a Excel.

<parametro>: Espera un valor booleano, es decir TRUE activa y FALSE desactiva.

84

@M EDISA

Notas Importantes sobre el MenU y la Botonera

Salvo raras excepciones el ment que tiene el programa se debe dejar con el menu6 estandar.

Para los botones particulares de cada programa como por ejemplo lanzar proceso se ha habilitado una barra
de botones vertical con 26 botones y 14 en la horizontal, que se pueden habilitar y usar con los siguientes
procedimientos:

Procedimiento para hacer visible y activar a la vez el boton:

e FMENU.BOTON_VERTICAL_VISIBLE(<boton>,<etiqueta>,<icono>): Hace visible un
boton. NOTA: debe de utilizarse siempre en el disparador INICIO
o <boton>: Los botones van desde el BO1 a B26 (para la botonera vertical) y del HO1 al
H14 (para la botonera horizontal).
o <etiqueta>: Etiqueta que aparecera cuando el usuario pasa el raton por encima del boton.
o <icono>: El icono sera un fichero .ico que estara en el path de UI_ICON.
e FMENU.BOTON_VERTICAL_ACTIVAR(<boton>,<como>): Procedimiento para desactivar
o activar el boton después de que ya sea visible:
o <como>: Es un valor booleano, TRUE activa y FALSE desactiva.

Para gestionar el pulsado de cada uno de los botones se usara el disparador OPCION_MENU, se identificara
el botdn pulsado por el valor del pardmetro OPCION _MENU.

OPCMENU.OPCION_MENU (:global.codigo_empresa, :parameter.opcion_menu);
IF :parameter.opcion_menu = ‘B01’ THEN

--CODIGO PARTICULAR PARA ESE BOTON
END IF;

IMPORTANTE: Al nombre del fichero no se le pasara la extension, ya que la asume automaticamente.
MUY IMPORTANTE:

e Los botones se deben declarar de forma correlativa comenzando en el BO1 y sin dejar huecos, es
decir, no se puede usar el BO05 sin previamente haber hecho visibles con
FMENU.BOTON_VERTICAL VISIBLE los BO1, B02, B03 y B04. Si no se cumple esto al
afiadir plug-ins al bloque se produciran funcionamientos totalmente inesperados.

e Solo se pueden usar los botones verticales BO1 .. B26 dentro del fuente Ginica y exclusivamente si
han sido creados dentro del fuente, es decir, si no se ejecuta en el disparador INICIO un
FMENU.BOTON_VERTICAL VISIBLE('BO1', ... dentro del fuente nunca se puede hacer
referencia a 'BO1".

En el caso de que si un boton se inicializa con una determinada condicion, por ejemplo el sector de la
empresa, el codigo que ejecute en OPCION MENU y en las [Illamadas a
FMENU.BOTON_ VERTICAL ACTIVAR tiene que ir también la misma condicion.

Por ejemplo si se inicializa un botdn con esta condicion:

IF pkpantallas.sector empresa(:global.codigo_empresa) = 'XX' THEN
FMENU.BOTON_VERTICAL VISIBLE ('BO5', 'Borrar Todo', 'produccion');
END IF;

El codigo que va en el disparador OPCION_MENU tiene que ir dentro de esa misma condicion, es decir:
IF :parameter.opcion _menu = 'BO5' AND pkpantallas.sector empresa(:global.codigo empresa) = 'XX' THEN

-- codigo
END IF;

También en el caso de activar o desactivar por codigo el boton hay que meter esa condicion, por ejemplo:

IF pkpantallas.sector_empresa(:global.codigo_empresa) = 'XX' THEN
IF :bl.condicion = 'S' THEN
FMENU.BOTONivERTICALiACTIVAR('BO5', TRUE) ;
ELSE
FMENU.BOTON_ VERTICAL ACTIVAR('B05', FALSE);
END IF;
END IF;

85

@M EDISA

Una buena practica es afladir los botones definidos en el fuente con
FMENU.BOTON_VERTICAL VISIBLE en la pestaiia “Botonera” del mantenimiento de programas.

eoe LIBRA EDISA

€34digo. ejecutar antes del cidigo inters del programa

e [Etiqueta: Etiqueta que se mostrara cuando el usuario pase el raton por encima del boton.

e Codigo a ejecutar antes del codigo interno del programa: Codigo que se ejecutara antes de que
el programa ejecute el codigo asociado a ese botdn en el disparador OPCION_ MENU. Si este
codigo ejecuta :p_parar_ejecucion := ‘S’; no se llegara a ejecutar el cédigo que se encuentra en el
codigo fuente del programa.

De esta forma es posible personalizar el programa para autorizar o desautorizar por perfiles el uso de esos
botones, aparte de cambiar la etiqueta estdndar o afiadir un cddigo pl/sql a ejecutar antes del codigo del
programa.

Generar Logs de traza.

Si se quiere que un programa vaya generando una traza para su posterior comprobacion se usara el paquete
PANTLOG contenido en la libreria PKLIBPNT. La traza consistira en lineas de texto que se grabaran en
un fichero plano.

NOTA: Antes era necesario utilizar PANTLOG.INICIALIZAR en el disparador INICIO. Ahora este paso
ya no es necesario, el log se inicializa de forma automatica.

IMPORTANTE: La variable DIRECTORIO _LOG se define en el archivo libra.env (o el indicado en
formsweb.cfg) y el archivo de traza serd generado en el servidor de aplicaciones. Si el usuario tiene
autorizado (configuracion por usuario / empresa) la visualizacion de registro de Log en “Acerca de...”
podra abrir directamente la traza haciendo doble click sobre el campo “Directorio LOG” del “Acerca de...”.

Para grabar una linea al final del archivo de log se usara la instruccion PANTLOG.ESCRIBE(<linea>).
En el parametro linea sera el texto que se quiere que se grabe.

En PANTLOG.ESCRIBE se puede indicar un segundo parametro “PANTLOG.ESCRIBE(<linea>,
<nivel>)” para indicar en qué nivel de LOG debe ser escrita la linea en la traza. Los niveles de log posibles
son (en negrita el codigo de <nivel>):

e Errores: Funcionamiento normal, sin indicar el pardmetro de nivel de log. Siempre se escribe en
el LOG.

e Advertencias: Registra los niveles anteriores + los marcados como "WARN': Esta pensado para
registrar situaciones que puedan registrar algun tipo de problema en la ejecucion del programa,
pero que no impiden que el programa se ejecute

e Informacion: Niveles anteriores + 'INFO': Estda pensado para registrar valores de
parametrizacion.

86

@M EDISA

e Depuracion: Niveles anteriores + '"DEBUG': Esta pensado para registrar valores de variable,
funciones que se ejecutan, ..., es decir, el nivel maximo de detalle. Este nivel no incluye ningtin
evento generado por el entorno.

e Todos: Niveles anteriores + eventos del entorno. No se puede usar en ningiin programa, ya que
estd reservado de forma exclusiva para programas del entorno. Al activar este nivel de traza se
registran multitud de eventos del entorno, WHEN-VALIDATE-ITEM, WHEN-NEW-ITEM-
INSTANCE,

Para grabar un volcado de informacion del programa se llamara a
PANTLOG.GRABA DUMP(‘<bloque>’, ‘VALORES’);

e <bloque>: Codigo del bloque del programa del que se quiere volcar informacién al archivo de
log. Si se pasa en blanco, es decir, NULL, se generara de todos los bloques del programa.
e ‘VALORES’: Valor fijo.

Por seguridad, al hacer un volcado, solo se mostrara el valor de los campos que el usuario esté visualizando
en pantalla. Como excepcion es que el usuario sea superusuario, o Libra se esté

ejecutando en modo a prueba de fallos (modo que sélo un superusuario puede hacerlo). o

P.X{ %8 Opciones Ediciot

Durante la ejecucion del programa, se puede volcar informacion de los bloques al gf{tﬁ'mwo
. - , . . B s [RA 1
archivo de traza, se puede hacer con la opcion de menu (Archivo -> Volcar informe a | 5pjcar registro
LOG) Crear Registro =
El fichero solo se generard si estd activada la traza, es decir, la variable global
:global.traza contiene el valor SI. Desde el ment de Libra la puede activar el | Hoja de Calculo
superusuario en Especial -> Activa Traza y se desactiva en Especial -> Desactiva Traza.
Una vez se activa la traza, se puede indicar el nivel de log, desde s6lo errores a Todos. =y
N —
. ., . 5
En el archivo de Log también se guardan los Logs de LIBRA LOG registrados en base m
de datos. Bt ‘
©) | Cambiar fecha
. . , . = Cambiar empresa
El archivo de Log se puede abrir de forma rapida desde el “Acerca de...” de los ctados Y & Cambiarusuo
programas haciendo doble click sobre el campo “Directorio Log”. () onta | amoerconrscta
-ambiar perfi
. . . . - ., Organizadiol ¢ampiar rol
Si se activa la traza a todos los mensajes que muestre Libra, se les afiadira el campo |
, ;. , . Modo Prueba de Fallos
segun el siguiente criterio (inicamente se concatenara uno, el primero de los 3 que tenga Erores
valor): Advarincias L.

Informacion
Debug | —

e Campo que produce el error.
e Campo que esta lanzando el evento. Abinspacor e

Desactivar

e Campo en que se encuentra el cursor.

Ejemplo:

i Debe introducir este campo. FRM-40202: Es obligatorio

introducir un valor en el elemento.. PROGRAMAS_ERP.
CODIGO
———

Logs de incidencias ocurridas en la base de datos

En el paquete PKPANTALLAS hay un procedimiento llamado LOG destinado a registrar incidencias
ocurridas en la base de datos. Se ejecuta mediante una transaccion autéonoma, por tanto, incluso si la
transaccion que lo llama hace un ROLLBACK queda registrada la incidencia. El registro queda en una
tabla llamada LIBRA LOG. Este procedimiento recibe 3 parametros:

e Texto a registrar.
e Paquete desde el que lo estamos llamando.
e Punto dentro del paquete desde donde lo estamos llamando.

87

@M EDISA

Esto es util en paquetes de base de datos en donde capturamos el WHEN OTHERS (o se hace un RAISE
Salir) y devolvemos un error genérico, normalmente cuando pasa esto encontrar el problema es cosa de
locos, cuando la solucion (por ejemplo) puede ser tan sencilla como ampliar un TABLESPACE.

Ejemplo: Si se llama desde el paquete SV en un WHEN OTHERS la forma de llamarlo seria:

e En el primer WHEN OTHERS: PKPANTALLAS.LOG (SQLERRM, 'SV', '1");
e Enel segundo WHEN OTHERS: PKPANTALLAS.LOG (SQLERRM, 'SV', '2");

IMPORTANTE: Solo se debe usar donde realmente la incidencia es importante, no se debe usar para ir
dejando trazas de por donde pasa un programa ya que sobrecarga bastante.

Para guardar trazas se puede usar PKPANTALLAS.TRAZA con los mismos pardmetros. Se debe de usar
unicamente dentro de procedimientos almacenados en la base de datos y se guarda también en la tabla
LIBRA_LOG, pero tinicamente cuando en el ment de Libra esté activada la traza.

Disparadores estandar

Los disparadores estandar son aquellos que ejecutan el mismo codigo en todos los programas, este codigo
estd en la libreria PKLIBPNT en el paquete DISPSTD.

Es recomendable que todos los disparadores ejecuten ese codigo, ya que si se hace una modificacion en la
PKLIBPNT para afiadir una nueva funcionalidad esta ya estara incluida en todos los programas que la usen
solo recompilando la libreria.

Por ejemplo, si tenemos en un bloque el disparador WHEN-NEW-BLOCK-INSTANCE, a medida, es
recomendable poner en el disparador, aparte del coédigo personalizado, una llamada al coédigo estandar
DISPSTD.WHEN NEW_ BLOCK INSTANCE.

Los disparadores estandar tienen el mismo nombre que los disparadores de Forms, pero con guiones bajos
en vez de guiones altos.

Particularidades

El codigo estandar de DISPSTD.NEW RECORD INSTANCE,
DISPSTD.WHEN NEW BLOCK INSTANCE y DISPSTD.KEY DELREC llevan implicito una llamada
al procedimiento POSTEAR, entonces si algin dato ha sido modificado (variable :system.form_status =
‘CHANGED?) se ejecutara un POST forzando la validacion de todos los campos y registros pendientes de
validar.

Hay casos en el que no nos interesa que estos disparadores hagan un POST, pero si que ejecuten el resto
del codigo estandar, para ello podemos desactivar el POST del disparador poniendo antes de la llamada al
DISPSTD una llamada al procedimiento DISPSTD.DESACTIVAR POSTEADO. El desactivado sélo
tendra efecto en el proximo disparador DISPSTD.WHEN NEW _ RECORD,
DISPSTD.WHEN BLOCK INSTANCE, DISPSTD.KEY_ DELREC.

Personalizacién Borrado y grabacion.

Hay casos en los que hay que anular totalmente el disparador estandar, ya que la accion que hacen dependera
de una pregunta al usuario, en estos casos es recomendable ver el codigo que ejecuta el disparador estandar
para no perder ninguna funcionalidad. Por ejemplo, si personalizamos el disparador KEY-EXIT hay que
poner en el codigo para cancelar la lista de valores, calculadora, ...

Para minimizar el caso en los que hay que anular el disparador estandar, existen dos disparadores a nivel
de formulario, para meter el codigo personalizado y no tener que cambiar nada de los disparadores estandar.

e ANTES_BORRAR: Se ejecuta antes de que el disparador estandar borre el registro y después de
que el usuario confirmase la pregunta de borrado.

e ANTES_GRABAR: Se ¢jecuta antes de que el disparador estandar ejecute el COMIT FORM y
después de que el usuario que quiere grabar las modificaciones, tanto al pulsar el boton de grabar
como al pulsar el botén de salir y habia modificaciones pendientes de grabar.

88

@M EDISA

Impresion.
Impresién por FAX.

Si en un programa se quiere dar la opcion de que el usuario seleccione impresion por fax se ejecutara
DISPSTD.ACTIVA IMPRESION FAX en el disparador INICIO. De esta forma en la lista de dispositivos
de salida se afiade la opcion Fax a las opciones Pantalla, Impresora, ...

La llamada a esa funcion inicamente afiade la opcion en la lista de dispositivos de salida, la l6gica del envio
a fax tiene que estar en el programa en el boton BREPORT.IMPRIMIR.

Impresién multidestino.

En los programas siempre se va a lanzar en primer lugar la impresion que selecciona el usuario, pero por
personalizacion en codigo pl/sql de antes de imprimir o dentro del fuente se puede forzar a que la impresion
se haga en otros destinos de forma simultanea.

Para habilitar el multidestino hay que ejecutar una TUnica vez el procedimiento
pkpantallas.inicializa_multidestino_report y luego por cada destino al que se quiera enviar el report hay
que ejecutar: pkpantallas.add_multidestino_report(p_informe, p_dispositivo, p_tipo_fichero,
p_imp_asincrona, p_imprimir_por, p_impresora, p_destino, p_email):

e p informe: Se puede indicar otro informe a imprimir, si se pasa a NULL se imprimira el informe
seleccionado por el usuario.

e p dispositivo: Puede recibir los siguientes valores: SCREEN, PRINTER, FILE, MAIL, FAX,
GESTDOC.

e p tipo_ fichero: Se usa para cuando el dispositivo genera un archivo (FILE, MAIL, FAX y
GESTDOC) ¢ indica el tipo de archivo a generar, recibe los siguientes valores: PDF, XLS, HTML,
RTF, XML

e p imp asincrona: Indica al servidor si la impresion se ha de ejecutar en modo sincrono (S) o
asincrono (N).

e p imprimir por: Se usa Unicamente para indicar si se imprime por la impresora de WINDOWS,
en ese caso hay que pasar el valor WINDOWS.

e p impresora: En caso de que el destino sea PRINTER en este parametro se pasa el codigo de la
impresora 16gica por la que se ha de imprimir. Si p_imprimir_por recibe el valor WINDOWS en
este parametro se pasara WINDOWS V para indicar que imprima por la impresora asociada de
Windows en vertical Y WINDOWS_H para horizontal.

e p destino: Se usa para indicar la ruta y nombre de archivo a generar cuando el dispositivo esta
asociado a archivo (FILE, MAIL, FAX, GESTDOC).

e p_email: Direccion de correo electronico que se usaran cuando el dispositivo sea MAIL.

89

@M EDISA

Crear un formulario desde cero

Nos basaremos inicialmente en el formulario base “manbase6.fmb”, este formulario ya incorpora el
componente FORMULARIO BASE de la libreria de objetos objetospant.olb.

Antes de nada, para no sobrescribir el formulario base ya lo grabamos con el nombre definitivo que vaya a
tener el programa.

Anadir un nuevo bloque de mantenimiento de una tabla:

e Incorporar un nuevo bloque usando el asistente.

e Seleccionamos tabla o vista.

e Indicamos la tabla y los campos que vamos a usar.

e En el asistente de diseflo, afiadimos los campos en el lienzo CANVAS BASE y en el tab TABO.

e Indicamos los campos que van a estar visibles en el mantenimiento.

e Poner la propiedad “Clave Primaria” a SI de todos los campos que forman la clave primaria de la
tabla asociada al bloque. (*)

e Activar la propiedad del bloque “Forzar Clave Primaria” si la tabla asociada tiene clave primaria.

*)

(*) Solo si el programa no tiene numeracion automatica, como por ejemplo una entrada de albaranes, donde
el nimero (parte de la clave primaria) se obtiene de un contador de forma automatica.

El punto de asignar la clave primaria de muy importante, ya que la validacion estandar si se encuentra con
un campo que es clave primaria busca el resto de los campos que forman la clave primaria y si todos tiene
valor comprueba si el registro ya existe, antes de que al usuario se le pidan mas datos.

Para el punto de la validacion de la clave primaria es importante que cuando se asigna algtin valor por
defecto de la clave primaria, por ejemplo, el valor para el cddigo de la empresa no se realice en el disparador
PRE-INSERT ya que si se hace en ese momento nunca todos los campos correspondientes a la clave
primaria van a tener valor al ser validado alguno de ellos, por tanto, es recomendable asignarlos en el
disparador WHEN-CREATE-RECORD, pero sin anular la funcionalidad estandar del mismo.

Ejemplo:

DISPSTD.WHEN_ CREATE RECORD;
:bloque.codigo_empresa := :global.codigo empresa;

Poner el titulo del programa en la etiqueta de la pestaiia TABO de CANVAS BASE.

Poner a cada campo la etiqueta en castellano correspondiente en la propiedad Prompt. Nunca usar etiquetas
de texto normales ya que no se pueden modificar de forma dindmica y por tanto no se pueden traducir.

Tampoco se debe de usar marcos con etiqueta, ya que al no poder cambiarse de forma dinamica tampoco
se pueden traducir.

Borramos el marco que le pone el asistente de disefio al bloque.
Anadir al bloque la clase de propiedad correspondiente.

e CLASE BLOQUE: Si solo se visualiza un solo registro.
e CLASE BLOQUE_SCROLL: Si el bloque visualiza varios registros.

Afiadir la clase correspondiente a los elementos visualizados:

e FElementos de texto

o CLASE TEXT ITEM: El campo s6lo se visualiza un registro.

o CLASE TEXT ITEM_ GRID: El campo esta en un multiregistro.
e Elementos de fecha

o CLASE DATE ITEM: El campo solo se visualiza un registro.

o CLASE DATE ITEM GRID: El campo estd en un multiregistro.
e Elementos numéricos

90

@M EDISA

o CLASE TEXT ITEM NUMBER: El campo esta en un bloque de 1 registro.
o CLASE TEXT ITEM NUMBER GRID: Si el campo es multiregistro.

e Elemento de tipo casilla de verificacion.: CLASE_CHECK BOX.

e Botones de Radio: CLASE RADIO GROUP

e Elementos de lista de seleccion: CLASE LIST ITEM

e Botones: CLASE BUTTON

e Lienzos y pestafias: CLASE PAGE.

e Ventanas: CLASE VENTANA

Modificar la propiedad “Grupo de atributos visuales del Prompt” dependiendo de las dos posibilidades
siguientes:

e Campo Obligatorio: Atributo visual CAMPO_OBLIGATORIO PROMPT.
e Campo Opcional: Atributo visual CAMPO_OPCIONAL PROMPT.

Y% Grupo de Atributos Wisuales del Prompt CAMPO_OPCIONAL_PROMPT

Si el campo se ha creado desde el asistente seguramente tenemos que volver a heredar las propiedades
Alineamiento del prompt y Estilo de Visualizacion del Prompt, pulsando sobre la propiedad. Este paso se
puede hacer con varios items seleccionados.

= Prompt
? Prompt sk
@ Estilo de Yisualizacion del Prompt Primer Registro
= Justificacion del Prompt Principio
% Borde del Anexo del Prompt Superior
@ plineamiento del Prompt Centro
= Desplazamiento del Anexo del Prompt 0
= Desplazamienta del lineamiento del Prompt 0
@ iJrden de Lectura del Prompk Por Defecto

Para el alineamiento del prompt en campos que no estan en un grid de datos, es decir, no son multiregistro,
el borde del anexo del prompt es fin, por tanto, inicialmente van a aparecer a la derecha del campo, lo que
hay que hacer es poner el prompt a la izquierda y que se modifique la propiedad de desplazamiento del
anexo del prompt y dejando la propiedad borde del anexo del prompt con el valor “fin”. Esto es necesario
para que las etiquetas sigan perfectamente alineadas después de ser modificadas en otro idioma.

MUY IMPORTANTE: Los campos que sean de descripcion y que no pertenezcan a la tabla base del
bloque les pondremos el mismo nombre que el campo, pero anteponiendo el prefijo ‘D _’.

También hay que acordarse en las descripciones de poner el tamaifio correcto para el campo descripcion,
acorde con el campo en la tabla en donde se almacena dicha descripcion. Siempre es mejor pasarse de
tamafio que quedarse corto.

A los campos de visualizacion les afiadimos la clase correspondiente.

e CLASE DISPLAY ITEM: Si en el campo solo se visualiza un registro.
e CLASE DISPLAY ITEM GRID: Si el campo es multiregistro.

En vez de usar el disparador POST-QUERY para cargar el valor, usaremos el campo “Nombre Columna
Consulta” del mantenimiento de programas, usando el asistente (lista de valores) o introduciendo la SQL
necesaria de la forma (SELECT <campo> FROM <tabla> WHERE <condicién>), de esta forma se puede
ordenar y filtrar por este campo.

Si no se utiliza el asistente para asociar la obtencion de la descripcion a una lista de valores y el campo
puede ser NULL, podemos asignar a esta propiedad la siguiente sentencia SQL: DECODE(<campo>,
NULL, NULL, (SELECT <campo> FROM tabla WHERE <condicion>)). De esta forma si el campo es
NULL directamente no hace nada, y si tiene valor va a buscar la descripcion a la tabla correspondiente.

91

@M EDISA

Esta forma de obtener la descripcién da como principal ventaja que el usuario puede hacer filtros pulsando
F7 y F8 y también se puede hacer una ordenacion del bloque de datos por este campo.

Para mas detalle ver el apartado: Campos de visualizacion de descripciones.

Ejemplo: DECODE(unidad codigol, NULL,NULL,(SELECT descripcion FROM unidades almacen
WHERE codigo= articulos.unidad codigol))

Colocar campos en la pantalla.

Para alinear los campos multiregistro los alinearemos al final y apilando horizontalmente. Una vez apilados
horizontalmente los separaremos con el teclado un punto

Disparadores personalizados

Trataremos de poner todos los disparadores a nivel de bloque, controlando de que item viene el evento
mediante la variable de sistema :system.trigger item.

El orden de navegacion de los bloques sera el mismo que especificamos en el navegador de objetos del
formulario, por tanto, el primer bloque navegable va a ser el primero que aparezca en el navegador de
objetos.

IMPORTANTE: Siempre que usemos un disparador que tenga una funcionalidad estindar, deberemos
dejar la 16gica necesaria para que no se pierda esa funcionalidad, por ejemplo, si en el disparador WHEN -
NEW-RECORD-INSTANCE, necesitamos desactivar un campo, deberemos dejar una llamada al
procedimiento DISPSTD.WHEN NEW _RECORD_ INSTANCE.

Ejemplo:

DISPSTD.WHEN_NEW_RECORD INSTANCE;
IF :bloque.campo = 1 THEN

Set_Item Property(‘BLOQUE.CAMPO2’, ENABLED, PROPERTY_ FALSE);
END IF;

Modificacion de propiedades de campos (FITEM)

Normalmente las propiedades de los items se realizaran con la instruccion Set Item_Property, excepto las
siguientes (que a ser posible se usara el paquete FITEM).

e FITEM.VISIBLE(p_campo => <campo>, p_como => <parametro>, p_activado => <parametro>,
p_navegable => <parametro>, p_modificable => <parametro>): Hace visible u oculta un Item.
Cuando se hace visible ademas lo hace activo salvo que se indique p_activado => FALSE,
navegable por teclado salvo que se indique p_navegable => FALSE y modificable salvo que ese
indique p_modificable => FALSE.

e FITEM.ACTIVADO(p campo => <campo>, p_como => <parametro>, p_navegable =>
<parametro>, p_modificable => <parametro>): Activa o desactiva un Item. Cuando se activa
ademas lo hace navegable por teclado salvo que se indique p_navegable => FALSE y modificable
salvo que se indique p_modificable => FALSE.

e FITEM.MODIFICABLE(<campo>, <parametro): Activa o desactiva la modificacion de un
campo, tanto en registros existentes como en los nuevos.

e FITEM.OBLIGATORIO(<campo>, <parametro>): Activa o desactiva la obligatoriedad de que el
usuario introduzca un valor para el campo, también cambia el atributo visual del prompt, por
ejemplo, si se pone como obligatorio pone el Prompt en negrita.

<campo>: Cadena que contiene BLOQUE.CAMPO. Ejemplo: 'B8.ALMACEN'".

<parametro>: Espera un booleano, es decir TRUE activa y FALSE desactiva.

NOTA: El uso de los parametros p_activado, p_navegable, p_modificable hara que el fuente inicamente
se pueda utilizar en versiones de entorno 6.4.8 o superior.

92

@M EDISA

Campos de primary key de un bloque.

Si en un bloque a los campos que pertenecen a la clave primaria les activamos la propiedad de primary key
a los campos que forman la clave primaria (en el bloque es recomendable activar la propiedad “Forzar
Clave Primaria”, pero no es obligatorio para esto) al estar introduciendo el registro cuando el usuario le da
valor al ltimo campo que forma la clave primaria se comprueba si ese registro ya existe en la base de datos,
si ya existe se muestra un mensaje y no se espera a que termine de meter el registro completo para avisarle.

Para que funcione correctamente hay que tener muy en cuenta lo que se explicod en el apartado “Crear
formulario desde cero” sobre los valores iniciales de los campos de la clave primaria asignarlos en el
WHEN-CREATE-RECORD y no en el PRE-INSERT.

Campos Desde / Hasta

Normalmente en pantallas de filtro hay campos en los que se pide un valor desde y un valor hasta. Si es un
campo que de forma normal el usuario va a especificar un mismo valor en el desde que en el hasta ya le
proponemos el valor hasta igual que el desde en el momento de validar el campo desde.

Evitaremos mostrar mensajes de que el campo desde es mayor que el campo hasta, 1o que haremos al validar
el campo desde es comprobar si el hasta esta vacio o es inferior que el desde, en ese caso asignamos al
campo hasta el mismo valor que el desde. Si estamos validando el campo hasta y tiene el valor desde valor
y este valor es mayor que el hasta le asignaremos al campo desde el valor del hasta.

Ejemplo de validacion de un campo desde:

IF :bl.hasta IS NULL OR :bl.hasta < :bl.desde THEN

:bl.hasta := :bl.desde;
:bl.d hasta := :bl.d desde;
END IF;

Ejemplo de validacién de un campo hasta:

IF :bl.desde IS NOT NULL AND :bl.desde > :bl.hasta THEN

:bl.desde := :bl.hasta_cliente;
:bl.d desde := :bl.d_hasta;
END IF;
.
Mascaras

Una mascara sera del tipo FM999G999G990D9990, en donde las G indican en donde ira el separador de
millar, la D en donde ira el separador de decimales, el FM indica que si el importe es negativo que ponga
el signo ‘-* pegado al primer nimero comenzando por la izquierda.

Las mascaras para asignar a campos numéricos que contengan informacion de un importe de una
determinada divisa o un importe de una cantidad de almacén deben de usar el paquete PKMASCARAS.
Este paquete tiene las siguientes funciones que devuelven la mascara adecuada para cada caso:

e PRECIOS(p parte entera, p_parte decimal, p_divisa): Devuelve la mascara con los decimales
adecuados al valor de DECIMALES PRECIOS de la tabla DIVISAS para la divisa identificada
por p_divisa. Para precios en la divisa de la empresa en la que esta validado el usuario lo mas
recomendable es poner en el mantenimiento de programas en la propiedad Mascara del
campo el valor IMP.

e IMPORTES(p parte entera, p_parte decimal, p_divisa): Devuelve la mascara con los decimales
adecuados al valor de DECIMALES SIGNIFICATIVOS de la tabla DIVISAS para la divisa
identificada por p_divisa. Para importes en la divisa de la empresa en la que esta validado el
usuario lo mas recomendable es poner en el mantenimiento de programas en la propiedad
Mascara del campo el valor IMP.

e CANTIDADES(p parte_entera, p_parte _decimal, p_empresa): Devuelve la mascara con los
decimales adecuados al valor de DEC_CANTIDAD de la tabla AL PARAMO]1 para la empresa
identificada por p empresa. NOTA: Si no existe registro en AL PARAMO1 devolvera una

93

@M EDISA

mascara con los decimales indicados en p parte decimal. Para las cantidades lo mas
recomendable es poner en el mantenimiento de programas en la propiedad Mascara del
campo el valor CTD.

NOTA: Al estar la funcion de calculo de mascaras en Base de Datos se puede usar tanto en Forms, Reports,
etc. En Reports se puede sacar directamente como una columna mas de la sentencia, en una columna de
formula, etc.

Ejemplos de mascaras

Forms:
DECLARE
vV_mascara VARCHARZ2 (50) ;
BEGIN
vV_mascara := PKMASCARAS.PRECIOS (15, 4, :parameter.divisa_empresa);
Set_Item Property(‘BLOQUE.CAMPO’, FORMAT MASK, v_mascara);
END;
Reports:
FUNCTION <funcién> IS
v_mascara VARCHARZ2 (50) ;
BEGIN
v_mascara := PKMASCARAS.PRECIOS (15, 4, :p_divisa);
srw.attr.mask := srw.formatmask_attr;
srw.attr.formatmask := v_mascara;

srw.set_attr (0,srw.attr);
RETURN (TRUE) ;
END;

Funciones Varias

e BORDEN.MENU_ESTABLECER_ORDEN('REFRESCQ'): Vuelve a ejecutar consulta en el
bloque en que se encuentra el cursor, respetando los filtros aplicados por el usuario y vuelve a
posicionarse en el mismo registro y campo en el que se encontraba el cursor.

94

@M EDISA

Control de Errores

Oracle para la gestion de errores tiene las excepciones y los errores ORA. En la aplicacién se podrian
codificar errores ORA entre el -20999 y el -20000 para gestion de errores personalizados lo que nos deja
1000 errores para ser codificados.

Tenemos que usar un sistema que permita estos puntos:

Sea simple.

Répido de implementar.

Que se genere justo en el punto en el que se detecta el error.
Los errores le lleguen al usuario y traducidos si es necesario.
Que los puedan capturar las alertas.

Que sea gestionable

Para ello el entorno se ha reservado el cddigo de error ORA-20100 para tratar cualquier error que pueda
producirse en procedimientos almacenados en base de datos.

Cuando se produzca un error ORA-20100, el entorno lo gestionard de forma de que llegue al usuario o al
motor de alertas de forma clara.

Cuando en el codigo se quiera lanzar un error hay que poner un
RAISE _APPLICATION ERROR(pkerr.c ex error_rae, ‘Texto codificado del error’);

En ‘Texto codificado del error’ tiene que ir con una codificacion que pueda entender el entorno, por lo que
no se puede meter un texto directamente y en vez de eso se llamarda a la funcion
PKERR.GENERA MENSAJE RAE. Esta funcion tiene los siguientes parametros:

Obligatorios: Necesarios para mostrar el mensaje al usuario:

e p_tipo_mensaje: Tipo del mensaje codificado en Libra.

e p_codigo_mensaje: Codigo del mensaje dentro del tipo indicado en p_tipo mensaje. Unicamente
deberian de usarse mensajes que tengan un Unico boton, ya que desde base de datos no se puede
interpretar si el usuario pulsa uno u otro botoén.

Opcionales:

e p_texto_ampliacion: Texto que se concatenara al mensaje. Este texto se intentara traducir por lo
que hay que evitar concatenar valores fijos variables, por ejemplo: ‘Articulo: 1345451NL’. Lo
mejor es meter codigos de sustitucion, por ejemplo: ‘Articulo: {art}’, luego mediante las variables
se podra indicar que se sustituya {art} por un valor, pero esa sustitucion la hace después de hacer
la traduccion.

e p_codigo_excepcion: Cuando se trata posteriormente la excepcion se puede utilizar los valores
indicados en p_tipo_mensaje y p_codigo_mensaje, pero esos mensajes pueden ser muy genéricos
y utilizados en varios puntos. Si se indica p_codigo_excepcion, luego se podra utilizar este codigo
para tratar la excepcion y determinar de forma mas precisa el origen de esta, por lo que el valor
indicado deberia ser un valor inico, como por ejemplo estos valores:

o ex_stock_negativo
o ex_bloqueo_inventario
o ex_cliente_bloqueado

e p_texto_info_adicional: Cualquier informacion adicional que se quiera registrar. Esta
informacién no se mostrara al usuario y simplemente se metera en el texto del error, de forma que
al tratar el error con pkpantallas.log se guardara en LIBRA LOG o al ser capturado por la alerta
en el LOG de la alerta. Es interesante guardar el valor de variables que puedan ayudar al equipo
de soporte o a desarrolladores a poder determinar el motivo de que se hubiese producido el error
que se esta gestionando.

e p _variableX (donde X es un valor entre 1 y 9): Permite indicar un codigo de variable que se
encuentra en el texto del mensaje o en p_texto _ampliacion y que debe de ser reemplazado, por
ejemplo, sin en p_texto_ampliacion se indica ‘Articulo {art}’, en p_variableX se asignara el valor
“{art}’.

95

@M EDISA

e p_valor_variableX (donde X es un valor entre 1 y 9): Indica el valor por el que tiene que ser
sustituida la variable en el texto del mensaje, por ejemplo, si en p_variable se indica {art}, se
asignara el valor que contenga la variable o parametro con el codigo de articulo. También se puede
usar con p_etiqueta_variable, tal y como se explica a continuacion.

e p_etiqueta_variableX (donde X es un valor entre 1 y 9): Se pueden afiadir valores al texto del
mensaje de forma que se afladen Gnicamente cuando el p_valor variableX es no nulo. El texto
indicado se intentara traducir al idioma del usuario. Esto permite afiadir trozos de texto al mensaje
segun una variable tenga o no valor, por ejemplo: p_etiqueta_variablel => ‘N° Lote Interno’,
p_valor_variablel => p_numero_lote_int. En el caso de que p_numero _lote int sea NULL no
se afiadird nada al mensaje, pero si p_numero_lote int tiene el valor ‘XXX123’ se afiadirad al
mensaje que le llega al usuario: , N° Lote Interno: XXX123

En PL/SQL Developer (configuracion especifica de Edisa) hay plantillas para meter este codigo de forma
rapida:

RAE_

RAISE_APPLICATION_ERROR (pkerr.c_ex error_rae, pkerr.genera mensaje_rae(p_tipo_mensaje => '', p codigo_mensaje
=> ""));

ARAE_

pkpantallas.assert (
p_condicion => ,
p_mensaje => pkerr.genera mensaje_rae(p_tipo_mensaje => '', p_codigo_mensaje => ''),
p_paquete => $$PLSQL_UNIT,
p_punto => SPLSQL_LINE,
p_cod_excepcion => pkerr.c_ex error_rae);

Ejemplo:

raise_application_error(pkerr.c_ex error_ rae,
pkerr.genera_mensaje_rae (p_tipo_mensaje => 'A STK',

p_codigo_mensaje => 'NO HAY',
p_etiqueta variablel => 'Articulo',
p_valor_variablel => p_articulo,
p_etiqueta_variable2 => 'Ubicacién',
p_valor variable2 => p_ubicacion,
p_etiqueta variable3 => 'Palet',
p_valor variable3 => p palet,
p_etiqueta variable4 => 'N° Serie Interno',
p_valor variable5 => v_numero_serie_ int,
p_etiqueta variable6 => 'N° Lote Interno',
p_valor variable6 => p numero_lote nt,
p_texto info_adicional => 'lote_int: ' || v_lote int));

Cuando se lanza ese RAISE_ APPLICATION_ERROR se fuerza un ORA-20100 con un texto codificado
en SQLERRM. La funcién o procedimiento que lanza ese RAISE_ APPLICATION_ ERROR debera tener
controlada la excepcion WHEN OTHERS de la siguiente forma:

EXCEPTION
WHEN OTHERS THEN
pkpantallas.log(sqlerrm || ', lista de informacién a trazar’, S$SPLSQL_UNIT, ‘NOMBRE’);
RAISE;
END;
Ejemplo:
g EXCEPTION
= WHEN OTHERS THEN
pkpantallas.log(SQLERRM || ', tipo_movi: " || tipo _movi || ', empresa: ' || empresa || ', p_almacen: ' || p_almacen || '
situacion || ', cl: ' || TO_CHAR(cl) || ', cZ: ' || TO CHRR(c2) || ', ubi: ' || ubi || ', palet: ' || pa

tMI:SS"
12 ' || presen || ', c_pres: ' || TC_CHAR(c_pres) || ", stock_negativo: ' || stock megativo || '
az: ']l TO_CHAR(unid subk) I ', d_sobk: ' || TC_CHRR(unid sok) || ', d di "1l TO_CHRR(

serie i || ', serie p: ' || serie p || ", fecha crea: ' || TO CHAR(fecha crea, 'DD-MM-YY

lote_neg || ', p_mover_stock logico_pesca: ' || p_mover_stock_logico_pesca || ', tock_fisico_pe
p_num agrupacion || ', stock negativo uZ: ' || stock negativo u2, $$PLSQL OUNIT,
RAISE;
END stk_detallado;| I

96

@M EDISA

Ese pkpantallas.log y el RAISE; en el WHEN OTHERS es vital para que el entorno pueda decodificar el
error para mostrarselo al usuario de forma clara.

En los WHEN OTHERS deben de meterse en el log todos los parametros de la llamada a la funcién y
cualquier otra variable que se considere importante. Para hacer esto se debe de utilizar el programa
U_GENCODIGO de Libra en el qué indicando la especificacion de la funcion nos dara el codigo a
introducir para finalizar el procedimiento o la funcion.

Archivo Edicién Desplazamiento Consulta Ventana Ayuda

s c B o B
MM Generador de cédigo g
Generador de Cédigo para Trazas Convertir Llamada de Parametros Posicionales a Nominales

Especificacion de PROCEDURE / FUNCTION
FUNCTION stk_detallado(tipo_movi CHAR, empresa CHAR, p_almacen CHAR, articulo CHAR, zona CHAR, situacion CHAR, c1 NUMBER, c2 NUMBER, ubi CHAR, palet CHAR, lote_i CHAR, lote_ p 4
CHAR, serie_i CHAR,
serie_p CHAR, fecha_crea DATE, fecha_cadu DATE, presen CHAR, ¢_pres NUMBER, stock_negativo VARCHAR2, partida_sn VARCHAR2, unid_con NUMBER, unid_sub NUMBER,
unid_sob NUMBER,
unid_dis NUMBER, unid_exp NUMBER, lote_neg VARCHAR2, p_mover_stock_logico_pesca VARCHAR2, p_mover_stock_fisico_pesca VARCHAR2, p_num_agrupacion VARCHAR2,
stock_negativo_u2 VARCHAR2) RETURN VARCHAR2 IS

Tipo Others "+ Destino BBDD - INivel DEBUG: Control de entrada en unidades de programa, pasos del proceso, variables, ... -
v Copiar ati codigo al portapapel
EXCEPTION
WHEN OTHERS THEN
pkpantallas.log(sqlerrm || ', tipo_movi: ' || tipo_movi || ', empresa: ' || empresa || ', p_almacen: ' || p_almacen || ', articulo: ' || articulo || !, zona: ' || zona || ', situacion: * || situacion || ', c1: *
|| TO_CHAR(c1) || ', c2: ' || TO_CHAR(c2) || ', ubi: ' || ubi || ', palet: ' || palet || ', lote_i: ' || lote_i || ', lote_p: ' || lote_p || ', serie_i: ' || serie_i || ', serie_p: ' || serie_p || ', fecha_crea: " ||

TO_CHAR(fecha_crea, 'DD-MM-YYYY HH24:MI:SS") || ', fecha_cadu: ' || TO_CHAR(fecha_cadu, 'DD-MM-YYYY HH24:MI:SS") || ', presen: ' || presen || ', c_pres: ' || TO_CHAR(c_pres) || ',

stock_negativo: ' || stock_negativo || ', partida_sn: ' || partida_sn || ', unid_con: ' || TO_CHAR(unid_con) || ', unid_sub: ' || TO_CHAR(unid_sub) || ', unid_sob: ' || TO_CHAR(unid_sob) || ',

unid_dis: ' || TO_CHAR(unid_dis) || *, unid_exp: ' || TO_CHAR(unid_exp) || ', lote_neg: ' || lote_neg || ', p_mover_stock_logico_pesca: ' || p_mover_stock_logico_pesca || *,

p_mover_stock_fisico_pesca: ' || p_mover_stock_fisico_pesca || ', p_num_agrupacion: ' || p_num_agrupacion || ', stock_negativo_u2: ' || stock_negativo_u2, $$PLSQL_UNIT, 'STK_DETALLADO');
RAISE;

END stk_detallado;

En la unidad de programa llamadora, si fuese necesario se podria gestionar el error y tratarlo, por ejemplo,
se estd moviendo almacén de 30 articulos y uno no tiene stock, con lo que lanzara la excepcion de que no
hay stock, pero podria darse el caso de que el programa llamador sabe como gestionar eso y pueda mover
el almacén de los 29 restantes y luego indicarle al usuario los que no ha podido realizar. Eso lo sabe la
unidad de programa que llama al procedimiento de mover almacén, pero eso unidad de programa no tiene
qué saber que quien le pide mover almacén sabe gestionar ese error, por lo que el tratamiento ahi es
exactamente igual, si no hay stock se lanza una excepcion con el mensaje A STK — NO_HAY vy el cddigo
de excepcion “ex_stock negativo”.

El programa llamador para gestionarlo tendra que meter el control de la excepcion y tratarla:

BEGIN
llamada_a_mover_almacen() ;
EXCEPTION
WHEN pkerr.ex error rae THEN
IF pkpantallas.codigo_error rae() = 'A STK-NO HAY' THEN
pkpantallas.limpia_error_rae();
-- Tratar el error como se considere oportuno.

ELSE
RAISE;
END IF;
END;

e Con WHEN pkerr.ex _error rac THEN se captura el error lanzado con cualquier
RAISE _APPLICATION_ ERROR(pkerr.c_ex error rae, ‘XXXX’);

97

@M EDISA

e Con pkpantallas.codigo error rae() nos indica el tipo + mensaje asociado al error
PKERR.EX ERROR RAE.

e Si es el error que se quiere gestionar hay que ejecutar pkpantallas.limpia_error_rae() para
indicarle al entorno que vamos a tratar el error y que se olvide de él.

e Sino es un codigo de error conocido y que se pueda gestionar se propagara con RAISE;

También se podria utilizar el coédigo de excepcion indicado (si no se indicé serd igual que
pkpantallas.codigo_error_rae).
BEGIN
llamada_a_mover_almacen() ;
EXCEPTION
WHEN pkerr.ex_ error_ rae THEN
IF pkpantallas.codigo_excepcion_rae() = 'ex stock negativo' THEN
pkpantallas.limpia_error_rae();
-- Tratar el error como se considere oportuno.

ELSE
RAISE;
END IF;
END;

El texto de un error SQERRM se puede traducir para que sea entendible para los usuarios con
pkpantallas.texto_error_rae(p_mensaje => sqlerrm);

Al ser errores gestionados por el entorno, desde la configuracion del mensaje se puede indicar como debe
de comportarse sobre el registro en LIBRA LOG de la excepcion, ya que una excepcion de que no hay
stock podria ser que no interese que se registre en LIBRA LOG.

En “Mensajes” y “Mensajes Personalizados” se puede indicar el comportamiento mediante el campo
“Bloquear LOG en excepciones”

Mensajes —0OX
Mensajes
2
Tipo Codigo Descripcion
A_STK MENSAJES DE STOCKS2 BL_INM El articulo estd inmovilizado. -
A_STK MENSAJES DE STOCKS2 BL_INV El articulo estd bloqueado por inventario.
A_STK MENSAJES DE STOCKS2 BL_LOTE Ese lote esta bloqueado por otro usuario.
A_STK MENSAJES DE STOCKS2 BL_SERIE Esa Serie estd bloqueada por otro usuario.
A_STK MENSAJES DE STOCKS2 NO_HAY No se dispone de ese material en STOCK.
A_STK MENSAJES DE STOCKS2 NO_NEG Cuando se trabaja con Palets, Lotes, Series o Ubicaciones, el Stock no puede quedar NEGATIVO.
A_STK MENSAJES DE STOCKS2 STKDNEG No se puede realizar la operacion ya que quedaria el stock de depdsito en negativo.
A_STK MENSAJES DE STOCKS2 STKNEG No se puede realizar la operacién ya que quedaria el stock en negativo.
A_STK MENSAJES DE STOCKS2 STKNEGMA No se puede realizar la operacién ya que quedaria el stock en negativo, superando la tolerancia maxima pern
A_STK MENSAJES DE STOCKS2 ZON_SIT La zona - situacién destino no pueden ser iguales a las de origen.
v
+ Boton Ok Etiqueta 1
Boton Cancelar Etiqueta 2 Mostrar en barra de estado
Grabar Logfile Etiqueta 3 Posicionar Botén Cancelar en 1er lugar
Bloguear LOG en excepciones Confirmacion No v OK
[Emitir Sonido Icono Cancelar
Cédigo pl/sal botdn 1 Cédigo pl/sql botén 3 Caddigo pl/sql previsualizacién
a a a
v v v v
Idioma Descripcion en Idioma Etiqueta 1 Etiqueta2 Etiqueta3 Texto OK Texto Cancelar
06 FRANCES Ce matériel n'est pas disponible en Stock. =
v

Los valores posibles son:

e No: Se graba LIBRA _LOG en todos los puntos en los que se capture la excepcion.

e Si— Transformar en Advertencia: No se graban en LIBRA_ LOG, pero si esta la traza activada
se registran como WARNINGS.

e Si—Excepto en el primer punto de captura: En la primera funcion o procedimiento que capture
la excepcion grabara en LIBRA LOG, el resto son transformadas a WARNINGS que se
registraran si esta la traza activa.

98

@M EDISA

Nomenclatura de SQLS

Siempre que se haga un INSERT en una tabla se indicaran todos los campos que se estan insertando, incluso
si estamos metiendo valor a todos los campos, ya que en el momento de hacer la SQL vemos unos campos
en la tabla, pero nadie nos asegura que mas adelante (antes de sacar la version) se afiadan nuevos campos a
esa tabla:

e Ejemplo Incorrecto: INSERT INTO tabla VALUES (v1, v2, ..., vn);
e Ejemplo Correcto: INSERT INTO tabla (campol, campo2, ... campon) VALUES (v1, v2, ..., vn);

Comprobaremos que todas las lineas del sql estan finalizadas con punto y coma (también sirve poner en la
linea siguiente una barra /).

Toda secuencia de INSERT, UPDATE, DELETE llevara un COMMIT. A las sentencias DDL (es decir
aquellas que cambian una estructura de la base de datos CREATE, DROP, ALTER, REPLACE) no hace
falta hacer COMMIT ya llevan uno implicito.

Los nombres de las SQLS deben ser de la siguiente forma:
El nombre del objeto cuando la SQL sea de (En la version solo saldra la version mas reciente del objeto.

e Procedimiento.
e Funcion.

e Paquete
e Vista
o Trigger

Nombre del objeto mas un sufijo (tal y como se genera desde libra) cuando la sql sea de (En la version solo
saldra la version mas reciente del objeto, no hace falta mandar toda la historia de modificaciones)

e Programa: Nombre del programa + PR
e Lista de valores: Nombre de la lista de valores + LV
e Mensaje: Codigo del mensaje + MSG

Resto de SQLS: aajmm|dd|nm|ce/md|fn.sql

e aa: dos tltimos digitos del afio.

e mm: mes (2digitos).

e dd: dia (2 digitos).

e nm: numeracion de las sqls del mismo dia y modulo.
e ce: centro de Edisa:

o md: Madrid.
o ov: Oviedo.

o ou: Ourense
o vg: Vigo

o bc: Barcelona.

e md: médulo de libra:

us: (Entorno)

crm: (CRM)

fi: (Financiero)

cp: (Compras - Aprovisionamiento)
al: (Logistica - Almacén)

fa: (Ventas - Distribucion)

pr: (Produccion)

ca: (Calidad)

vh: (Mantenimiento SAT)

O O O 0O O O O O O

99

@M EDISA

pre: (Gestion de Proyectos)
no: (Nominas)
pre: (Control de presencia)
rh: (Recursos Humanos)
gd: (Gestor Documental)
mof: (Movilidad OFF-LINE)
mon: (Movilidad ON-LINE)
web: (Web)
gal: (Servicios Galileo)
ron: (Reporting ON-LINE)
o bi: (Business Inteligence)
e fn: funcionalidad de la SQL.:
o mn (Menus).
o tb (Tablas). Modificacion, creacion, etc.
o pv (Procesos Varios). Todo tipo de procesos de actualizacion de datos, etc., que no entren
en los grupos anteriores.

O O O O O O O O O O

Por ejemplo, si se cambia una tabla de facturacion a fecha de hoy, y ya se han creado hoy 2 SQLS de
facturacion en Vigo, el nombre quedaria asi: 01011003 vgfatb.sql

100

Notific

EDISA

acién de errores en procesos desatendidos

La tendencia deberia ser cada vez mas a que las tareas se ejecuten sin ninguna intervencion de usuarios,
pero esto plantea el problema de como alertar a los administradores del sistema o a ciertos usuarios de que
se estan produciendo problemas y puedan solucionarlos.

Ahora mismo hay procesos de este tipo que en caso de fallo comienzan a grabar registros en LIBRA LOG
produciendo que se dispare su tamafio y nadie se entera de que algo esta fallando ya que casi nadie esta
revisando de forma activa la tabla LIBRA LOG en busca de problemas.

Los proc

esos desatendidos tienen que registrar un fallo deben de llamar a pk_notificaciones.notificar error.

Este procedimiento recibe 4 parametros:

Ejemplo:

p_localizador: Es el codigo por el cual se identifica el error, por tanto, hay que implementar algo
que en el caso de que se produzca un mismo error se le asigne el mismo localizador para que la
gestion de la notificacion se haga correctamente. NOTA: En el caso de pasar este parametro a
NULL se usara como localizador la firma SHA1 del texto pasado en el parametro p_mensaje y
en la pantalla de visualizacion de notificaciones pendientes a la descripcion no le sera concatenado
el localizador.

p_mensaje: Texto que sea entendible para un humano que revise la notificacion de error para que
pueda localizar y arreglar el problema en el menor tiempo posible. NOTA: Para dar posibilidad de
traducir algunas etiquetas dentro del mensaje dependiendo del idioma del usuario que lo esté
visualizando se pueden introducir las etiquetas entre el prefijo {<etq> y el sufijo </etq>}, lo que
esté entre esas etiquetas se intentara traducir al idioma del usuario. Por ejemplo: {<etq>Este texto
sera traducido al idioma del usuario</etq>}

p_tipo y p_codigo: Codificacion de la notificacion. Esta codificacion debe de estar dada de alta
en el programa "u_param_notif" para que Libra sepa como tratarla, en caso de no estar dada de
alta simplemente se grabara un registro en LIBRA LOG de la misma manera que si se hubiese
ejecutado pkpantallas.log.

pk_notificaciones_erp.notificar_error(v_servidor _dockers error || || p_peticion.id_galileo, v_texto_error,
'GALILEOQ', 'SERVICIO DOCKERS CAIDO"Y;

Configuracion de Notificaciones

101

N LIBRA EDISA - m] X
Archivo Edicién Desplazamiento Consulla Ventana Ayuda m LIBRA !
4« 4 » »l N - 4 o H »
@M Notificacién de problemas (LIBRA DESARROLLO ELIAS)
Configuracién de Notificaciones E.R.P. |
Tipo Ccédigo Descripcion Programa Salucién
SERVICIO_DOCKERS_CAIDO Servico de Dockers caido: galupdate -
GALILEO SERVICIO_CAIDO Servicio caido:
-
Operacidn Perfiles a los que notificar
ALERTA Lanzar alerta A SISTEMAS SISTEMAS -
LIBRA_LOG Grabar registro en LIBRA_LOG
-
Usuarios a los que notificar
-
-
¥ Empresa Equipos CRM a los que notificar
Escala Tiempo Horas = Frecuenca (Segin "Escala Tiempo?) 1 =
Alerta 993 Servido de Dockers caido =

Registro: 112

@M EDISA

En el programa u_param_notif se indicara por cada tipo + codigo de notificacion lo siguiente:

e Descripciéon: Texto que se le afiadira al asunto de la notificacion junto al cddigo de localizador.
e Programa Soluciéon: Cuando el usuario estd visualizando la notificacion por pantalla en Libra
tendra un botdn que abrira el programa que esta configurado. Este campo es opcional.

Lista de Operaciones a realizar para realizar la notificacion
Estan implementadas 2 operaciones posibles:

e ALERTA: Pondra en cola una alerta para que realice la notificacion por correo electronico a los
destinatarios parametrizados en esa alerta. Al indicar este tipo se mostrara el campo "Alerta" para
poder indicar el nimero de alerta a ejecutar.

e LIBRA_LOG: Registra en la tabla LIBRA LOG una entrada.

Estas operaciones no son excluyentes, es decir, si se configura ALERTA y LIBRA LOG realizara las 2 y
lo hara seglin lo que se configure en los campos Escala Tiempo + Frecuencia Segiin "Escala Tiempo".
Si se ha lanzado la notificacion y antes de que pase la frecuencia indicada de notificacion, vuelve a llegar
otra notificacioén no sera lanzada, simplemente se registra aumentando el nimero de ocurrencias.

En la configuracion de la notificacion se puede indicar a qué Perfiles / Usuarios / Equipos CRM que se
deben de notificar al entrar en Libra en el caso de que exista alguna notificacion abierta de ese tipo + codigo.
En el caso de que un usuario que se valide en Libra y tenga notificaciones que deben de serle notificadas
se le abrira el programa de notificaciones de forma automatica al entrar, desde este programa ya podria
marcarla como solucionada o ejecutar el programa que esté configurado como "Programa Solucion".

Una vez dentro de Libra, desde cualquier "Acerca de..." se puede ir a ese programa de notificaciones.

1 LIBRA EDISA — u] %
[Archivo Edicién Desplazamiente Consulta Ventana Ayuda m Ll BRA
4 = » |
al 5]
K M (LIBRA DESARROLLO ELIAS) [o=
L Informacién de Programa | Registra de LOG de Alertas g
Programa Sistema Operativo Windows 10 Usuario Libra EDISA Superusuario
Directorio Programa fibraffms Versidn Java 18.0.77 Usuario 5.0. elias
Fecha Creadion Versién Java Cliente 1.8.0_144 (x64) Ordenador 5.0. widvm
Fecha Modificacién 17/08/2017 11:15:25 - 4 VersénCientelbra 3.1.1 Servidor Forms fizc Configuracién ibra_saa_legac 1
Fecha Mto. Programas 18/06/2015 19:15:27 Ultimo LOG Versién Libra v6.0.2.6.2.7 LbraBD.jar 6.2.7
Fecha Personalizacion 31/03/2016 03:21:05 D 1 OpdénMend Compilado en Entorno 6.2.7 CRM. 6.2.7
NLS_LANG SPANISH_SPAIN.AL32UTFS Puesto Libra 145 Versién de Forms 12,2110 P.OL 3.15
Cédigo de Soporte 110001:90019 - EDISA T+DESPA] Version Cifrado 2 SeparadoresN® ,. NLS_LANG enB.D. SPANISH_SPAIN.UTF8:CHAR
Ruts Eicautables Ju01/app/Middeware Orade_Home bin: fu0 1/app Middieware/Orade_Homejorade_common/idifbin

fibra/adaptaciones: liora phs: bra/pl: ibra fmmas: fibrafmes
Ruta Programas

fu01/app/Middieware/Oracle_Home/oradle_common/madules/j j2ee.jar: fibra/ars libracs.jar fibra fiars/callbipservice. jar:
Jud1/app/Micdieware/Oracle_Home b fmbipe jar: /01 Oracle_Home forms i2ee/frmsry. jar:

Casspath Ju1/app/Middieware/Orade_Home/forms/provision/frmcanfig.jar: fud 1/app/Middiewar e Oracie_Home b idapicint 1. jar:
Ju01/app/Middieware/Oracle_Home ib/debuager.jar:/u01/app, (Oracle_Home forade_c dules foracle bali.share/share jar:
Ju0t/app/Middieware/Orade_Home/jib/utj jar: /ud 1/app/Middieware/Oracle_Home ji/zrclient.jar:/u0 1/app/Middieware /Oracle_Home/reports/jib/rrun.jar:
Ju01/app/Middieware/Oracle_Homeforms/javafrmwebutil.jar: /u01/zpp/Middieware/Oracle_Home/arade_common/moduies foracie jps/ips-manifest.jar:

Ruta Iconos fibraficonos

Directorio LOG Jibraflog

Directorio Salida fibrajdirectoriosalida

Directorio Excel

Directario Temporal fibraftmp

Directorio BLOB_TEMP C:\Oradelbd'blobtemp

Version de Base de Datos 12.1.0.2.0 Oracle Database 12c Standard Edition Release 12.1.0.2.0 - 64bit Production,PL/SQL Release 12.1.0.2.0 - Production,CORE 12.1.0.2.0 Product

5.1.D. 23 Serial Sesién 51979 N° Ejecuciones 5.0. en Base de Datos IBMPC/WIN_NT&4-9.1.0

Usuarios Conectados 2 Maximo Histérico 3 Tiempo Acumulado Esquema de Base de Datos LIBRA

La informacién contenida en los manuales de LIBRA estd sujeta a cambios sin previo aviso. Los dibujos de las pantallas que acompafian a los textos, pueden tener pequefias diferendias respecto
alas que aparecen en su monitor; esto es debido a modificadones implementadas con posteriaridad o/a diferentes versiones del programa. Ninguna parte del manual puede ser reproducida ni
transmitida en forma alguna sin el consentimiento previo de EDISA. Microsoft, Windows, Word, Excel son marcas registradas de Microsoft Corporation. ORACLE y el logo de ORACLE son marcas
registradas de Orade Corporation. Cualquier otro producto o i jales o marcas registradas de otras empresas, y se usan nicamente a titulo
explicativo sin pretender infringir ningtin derecho. @ Copyright. #017. EDISA. Todos los derechos reservados.

Condiciones de soporte y licencia Notificaciones Contacts Soporte Técnica ..

ALRT_ALERTAS E : SUPERUSUARIO

Registro: 1/1

102

@M EDISA

Generacion de hojas de calculo

Para generar hojas de calculo desde Forms disponemos la libreria PKLIBXLS.PLL. Su objetivo es generar
de forma sencilla hojas de célculo a partir de SQLS.

También se pueden generar hojas de célculo desde Codigos PL/SQL, el funcionamiento es exactamente el
mismo, pero en vez de hacer llamada al paquete PKXLS hay que hacer llamada a PKXLSBD, el resto de
las funciones del API de generacion de hoja de célculo es idéntica, en la documentacion se hace referencia
a PKXLS, pero también es valido para PKXLSBD.

Pasos para la generacién de una hoja de calculo

Los pasos para generar una hoja de calculo son los siguientes:

1.

103

Llamada a: pkxls.inicializa: Simplemente inicializa estructuras internas del paquete pkxls, no
recibe ninglin parametro, pero es obligatorio que sea la primera instruccion que se ejecute.

Dar las propiedades a la hoja de calculo con: pkxls.set_propiedad excel: Define propiedades a
nivel del archivo de hoja de calculo, como por ejemplo el directorio en donde se va a generar,
nombre del archivo, etc.

Crear como minimo una hoja de calculo dentro del archivo, (se pueden generar tantas como sean
necesarias) llamando a la funcion pkxls.crea_hoja: La llamada a esta funcion nos devuelve un
NUMBER que identifica la hoja, ese dato serd necesario almacenarlo para dar luego propiedades
a la hoja, como por ejemplo las sqls que debe de ejecutar.

Dar propiedades a la hoja, con pkxls.set_propiedad_hoja: Define propiedades a nivel de hoja,
como por ejemplo el nombre de la hoja. Este paso es opcional por defecto la crea con el nombre
Datos.

Anadir a la hoja tantas sqls como sean necesarias con la funcion pkxls.crea_sql, hay que pasarle
como parametro el identificador de la hoja que ha devuelto la funcién pkxls.crea_hoja. Nos
devuelve un NUMBER que identifica la SQL, ese dato sera necesario almacenarlo para poder dar
luego propiedades a la SQL. Las SQLS se ejecutaran de forma independiente y una al finalizar la
otra y en el orden en que se llame a pkxls.crea sql. Este paso es opcional, hay un método
alternativo para asignar directamente valores a las celdas indicando las coordenadas de la celda y
el valor a asignar con pkxls.excel celda.

Dar propiedades a la SQL, con pkxls.set_propiedad_sql: Define propiedades a nivel de SQL,
como por ejemplo la SELECT que ha de ejecutar. Este paso es opcional.

Dar propiedades a las columnas que se obtienen de la SQL con pkxls.set_propiedad_columna:
Define propiedades a nivel de un determinado campo de la SQL, como por ejemplo la mascara de
formato. Este paso es opcional.

Por defecto todos los campos numéricos se totalizan con suma, esa funcionalidad se puede
modificar creando tantas formulas de totalizacion como sean necesarias con
pkxls.crea_formula_total sql, cada formula de totalizacion generara una fila de totales en el
orden en que llamemos a la funcion. Esta funcion devuelve un NUMBER que identifica la formula,
ese dato sera necesario almacenarlo para poder dar luego propiedades a la formula. Este paso es
opcional.

Lanzar el proceso de generacion llamando a pkxls.generar_xls. Este paso es obligatorio, es el
que compila toda la informacion que se le ha proporcionado al paquete pkxls y genera la hoja de
calculo.

@M EDISA

Ejemplo:

DECLARE

v_id_hoja NUMBER;
v_id_sql NUMBER;

BEGIN

pkxls.inicializa;

pkxls.set_propiedad excel ('DIRECTORIO', 'c:\temp');

pkxls.set_propiedad excel ('ARCHIVO', 'prueba.xls');

v_id hoja := pkxls.crea_hoja();

v_id sql := pkxls.crea_sql(v_id_hoja);

pkxls.set_propiedad sqgl(v_id_sql, 'SQL', 'SELECT codigo_rapido "Cbédigo", nombre "Nombre", reservadon0Ol "Dato
Numérico" FROM clientes WHERE codigo_empresa = :global.codigo_empresa');

pkxls.generar_xls();

END;

Propiedades

Archivo de hoja de cdlculo

Se usara el procedimiento pkxls.set_propiedad_excel(<propiedad>, <valor>). Los valores que puede tomar
<propiedad> son los siguientes:

104

DIRECTORIO: Directorio en el que se va a generar el archivo.

ARCHIVO: Nombre del archivo, si no se indica se generara un nombre de archivo concatenando
el nombre del programa con el usuario de libra y la fecha y hora de la generacion.
ABRIR_EXCEL: Una vez generado el archivo lo abre con la aplicacion predeterminada, sea
Office o OpenOffice, por defecto estd activado, para desactivarlo hay que pasar en <valor> 'N'.
USAR_CONEXION_DIRECTA: Para la generacion de la hoja de célculo se establecera una
nueva conexion a la base de datos independiente.

NUMERO_FILAS_EN_MEMORIA: Si se indica este parametro en <valor> se indicara cada
cuantas filas se debe de escribir en disco, de esta forma se libera memoria permitiendo superar el
limite de filas al que se estaria limitado de la otra forma al quedarse sin memoria la maquina virtual
de Java. Al indicar este parametro obligatoriamente el formato de salida serd XLSX en vez de
XLS.

OCULTAR_COLUMNA _255: La columna 255 se usa internamente para guardar un codigo de
agrupacion para luego poder hacer totalizaciones, por defecto esa columna se oculta ya que al
usuario no le interesa para nada, pero mientras se esta desarrollando posiblemente interese ver el
codigo de agrupacion que se asigna. Para desactivar la ocultacion de la columna 255 hay que pasar
en <valor>'N".

TEXTO_TOTAL: Texto que se pone en las filas de totalizacion, como titulo de la totalizacion.
Si es un total de una agrupacion se concatena a este texto el titulo de la columna de la agrupacion.
IMPRIMIR_CABECERA: Si se pasa en <valor> ‘N’ se evita que se ponga el titulo del informe,
nombre de la empresa y el usuario que genera la hoja de calculo.
SQL_TITULOS_TAM_FUENTE: Tamaifio de la fuente de celdas de titulos. El valor se indica
en unidades 1/20 de puntos, es decir, para un tamafio de 40 habria que pasar 800, es decir, 40 *
20.

SQL_TITULOS_NOMBRE_FUENTE: Nombre de la fuente a utilizar en celdas de titulos.
SQL_TITULOS_COLOR_FUENTE: Color de la fuente a utilizar en celdas de titulos. Consultar
la tabla “Colores” en la seccion “Constantes” para ver los colores disponibles.
SQL_TITULOS_COLOR_FONDO: Color de fondo a utilizar en celdas de titulos. Consultar la
tabla “Colores” en la seccion “Constantes” para ver los colores disponibles.
SQL_TITULOS_NEGRITA: Se indica si las filas de titulo van a ponerse en negrita, por defecto
los titulos se ponen en negrita, para desactivarlo hay que pasar en <valor> la constante:
pkxls.boldweight_normal. Para ver la lista de constantes que se puede usar consultar la seccion
“Constantes”, tabla “Negrita”

SQL_TITULOS_SUBRAYADO: Se indica si las filas de titulo van a llevar el texto subrayado,
por defecto esta desactivado, para activarlo hay que pasar en <valor> la constante: pkxls.u_single.
Para ver la lista de constantes se puede consultar la seccion “Constantes”, tabla “Subrayado”.

@M EDISA

105

SQL_TITULOS_BORDE_SUP: Se indica si a las celdas de titulo van a llevar marcado el borde
superior, por defecto se le pone borde, para cambiarlo se puede pasar en <valor> una de las
siguientes constantes descritas en la seccion “Constantes”, tabla “Borde”.
SQL_TITULOS_BORDE _INF: Igual que SQL_TITULOS BORDE SUP pero para el borde
inferior de la celda, por defecto se le pone borde y puede llevar los mismos valores.
SQL_TITULOS_BORDE_DER: Igual que SQL TITULOS BORDE SUP pero para el borde
derecho de la celda, por defecto se le pone borde y puede llevar los mismos valores.
SQL_TITULOS_BORDE 1ZQ: Igual que SQL TITULOS BORDE SUP pero para el borde
izquierdo de la celda, por defecto se le pone borde y puede llevar los mismos valores.
SQL_ROTACION_TITULO: Angulo de rotacién del titulo, por ejemplo 90 para ponerlo en
vertical.

SQL_TOTALES_TAM_FUENTE: Tamafio de la fuente de celdas de totalizacion. El valor se
indica en unidades 1/20 de puntos, es decir, para un tamafio de 40 habria que pasar 800, es decir,
40 * 20.

SQL_TOTALES NOMBRE_FUENTE: Nombre de la fuente a utilizar en celdas de
totalizacion.

SQL_TOTALES_COLOR_FUENTE: Color de la fuente a utilizar en celdas de totalizacion.
Consultar la tabla “Colores” en la seccion “Constantes” para ver los colores disponibles.
SQL_TOTALES_COLOR_FONDO: Color de fondo a utilizar en celdas de totalizacion.
Consultar la tabla “Colores” en la seccion “Constantes” para ver los colores disponibles.
SQL_TOTALES NEGRITA: Igual que SQL TITULOS NEGRITA, pero para las filas de
totalizacion, por defecto se ponen en negrita.

SQL_TOTALES SUBRAYADO: Igual que SQL_TITULOS SUBRAYADO, pero para las
filas de totalizacion, por defecto no se subrayan.

SQL_TOTALES BORDE_SUP: Igual que SQL TITULOS BORDE_SUP, pero para las filas
de totalizacion, por defecto se marca el borde.

SQL_TOTALES BORDE_INF: Igual que SQL TITULOS BORDE INF, pero para filas de
totalizacion, por defecto se marca el borde.

SQL_TOTALES_BORDE_DER: Igual que SQL_TITULOS BORDE DER, pero para filas de
totalizacion, por defecto se marca el borde.

SQL_TOTALES BORDE _1ZQ: Igual que SQL_TITULOS_BORDE 1ZQ, pero para filas de
totalizacion, por defecto se marca el borde.

SQL_DATOS_TAM_FUENTE: Tamaifio de la fuente de celdas de datos. El valor se indica en
unidades 1/20 de puntos, es decir, para un tamafio de 40 habria que pasar 800, es decir, 40 * 20.
SQL_DATOS_NOMBRE_FUENTE: Nombre de la fuente a utilizar en celdas de datos.
SQL_DATOS_COLOR_FUENTE: Color de la fuente a utilizar en celdas de datos. Consultar la
tabla “Colores” en la seccion “Constantes” para ver los colores disponibles.
SQL_DATOS_COLOR_FONDO: Color de fondo a utilizar en celdas de datos. Consultar la tabla
“Colores” en la seccion “Constantes” para ver los colores disponibles.
SQL_DATOS_NEGRITA: Igual que SQL_TITULOS NEGRITA, pero para filas de datos, por
defecto no se pone en negrita.

SQL_DATOS_SUBRAYADO: Igual que SQL_TITULOS SUBRAYADO, pero para filas de
datos, por defecto no se pone en subrayado.

SQL_DATOS_BORDE_IZQ: Igual que SQL _TITULOS BORDE 1ZQ, pero para las filas de
datos, por defecto se marca el borde.

SQL_DATOS_BORDE_INF: Igual que SQL TITULOS BORDE INF, pero para las filas de
datos, por defecto no se marca el borde

SQL_DATOS_BORDE_DER: Igual que SQL TITULOS BORDE INF, pero para filas de
datos, por defecto se marca el borde.

SQL_DATOS_BORDE_SUP: Igual que SQL_TITULOS BORDE SUP, pero para fila de datos,
por defecto no se marca el borde.

@M EDISA

e SQL _DATOS BORDE_ULT_FILA_SUP: Igual que SQL DATOS BORDE SUP, pero para
la ultima fila de datos de la agrupacion o del listado, por defecto no se marca el borde.

e SQL_DATOS_BORDE_ULT_FILA_INF: Igual que SQL_ DATOS BORDE INF pero para la
ultima fila de datos de la agrupacion o del listado, por defecto se marca el borde.

e SQL _DATOS BORDE_ULT_FILA DER: Igual que SQL DATOS BORDE DER pero para
la ultima fila de datos de la agrupacion o del listado, por defecto se marca el borde.

e SQL _DATOS BORDE_ULT_FILA 1ZQ: Igual que SQL_ DATOS BORDE IZQ pero para la
ultima fila de datos de la agrupacion o del listado, por defecto se marca el borde.

e SQL_PONER_FONDO_FILAS IMPARES: Sirve para resaltar las filas impares de la sql. Se
puede usar cualquier color descrito en la seccion “Constantes” en la “Colores”, pero también se
puede indicar a mayores uno de los siguientes:

o S: Activa con el valor por defecto.
o N: Desactiva el resaltado.

Fuentes y Estilos

De forma directa no se pueden asignar fuentes a celdas hay que hacerlos a través de un estilo. Si lo inico
que se busca es dar color al fondo y a la fuente de las celdas se pueden utilizar los estilos prefijados en la
vista V_COLORES ERP, indicando a las celdas como codigo de estilo el wvalor de
V_COLORES_ERP.COLOR.

Para crear una fuente hay que usar la funcion pkxls.crea_fuente(), esta funcion devuelve un NUMBER que
identifica de forma tinica a la fuente. Mediante el identificador se pueden asignar propiedades a la fuente
usando el procedimiento pkxls.set propiedad fuente(<id fuente>, <propiedad>, <valor>). El identificador
sera necesario también para asignar la fuente a un estilo. Los valores que puede tomar <propiedad> son los
siguientes:

e NEGRITA: Permite activar o desactivar la negrita de la fuente, los valores posibles se detallan en
la seccion “Constantes” en la tabla “Negrita”.

e SUBRAYADO: Permite activar o desactivar el subrayado de la fuente, los valores posibles se
detallan en la seccion “Constantes” en la tabla “Subrayado”.

e NOMBRE_FUENTE: Nombre de la fuente a usar en las celdas. En <valor> hay que pasar
directamente el nombre de la fuente, por ejemplo 'Courier New'.

e TACHADO: Si se pasa S en <valor> el texto aparecera tachado.

e CURSIVA: Si se pasa S en <valor> el texto aparecera tachado.

e TAMANO_ FUENTE: Tamaifio de la fuente en unidades 1/20 de puntos, es decir, para un tamafio
de 40 habria que pasar 800, es decir, 40 * 20

e COLOR: Color con el que se pintara el texto de la fuente. Consultar la tabla “Colores” en la
seccion “Constantes” para ver los colores disponibles.

Para crear un estilo se usara la funcién pkxls.crea_estilo(), esta funcién devuelve un NUMBER que
identifica de forma tinica al estilo. Mediante el identificador se pueden asignar propiedades al estilo usando
el procedimiento pkxls.set propiedad estilo(<id_estilo>, <propiedad>, <valor>). Los valores que puede
tomar <propiedad> son los siguientes:

e CODIGO: Codigo tnico que se le asigna al estilo para poder ser localizado de forma mas sencilla
que por ID.

e FUENTE: Identificador de la fuente creada con pkxls.crea_fuente().

e MASCARA FORMATO: Mascara de formato para campos numéricos, la mascara hay que
especificarla en formato Excel, por ejemplo: '#,##0.00'

e AJUSTAR _TEXTO: Si es una columna de texto se puede hacer que el texto se ajuste a la
columna, para ello hay que pasar S en <valor>.

e PROTEGER: Si se pasa N y a la hoja se le ha establecido una contrasefia con
PASSWORD_HOIJA, las celdas que tengan el estilo podran ser modificadas. Por defecto esta
propiedad es S, por lo que si no se indica las celdas estaran protegidas en hojas con contrasena.

106

@M EDISA

Hoja.

BORDE_SUPERIOR: Permite pintar el borde superior de la celda, para ver los valores posibles
consultar la tabla “Borde” en la seccion “Constantes”.

BORDE_INFERIOR: Igual que BORDE SUPERIOR pero para el borde inferior.
BORDE_IZQUIERDO: Igual que BORDE SUPERIOR pero para el borde izquierdo.
BORDE_DERECHO: Igual que BORDE SUPERIOR pero para el borde derecho.
COLOR_FONDO: Color de fondo con el que se pintara la celda. Consultar la tabla “Colores” en
la seccion “Constantes” para ver los colores disponibles.

ROTACION: Angulo de rotacién del texto, por ejemplo 90 para ponerlo en vertical.
ALINEACION_HORIZONTAL: Alineado horizontal del texto. Consultar la tabla “Alineacion
Horizontal” en la seccion “Constantes” para ver las posibles alineaciones disponibles.
ALINEACION_VERTICAL: Alineado vertical del texto. Consultar la tabla “Alineacion
Vertical” en la seccion “Constantes” para ver las posibles alineaciones disponibles.

Se usara el procedimiento pkxls.set_propiedad hoja(<id_hoja>, <propiedad>, <valor>). Es necesario pasar
en el parametro <id_hoja> el identificador devuelto por la funcioén pkxls.crea_hoja. Los valores que puede
tomar <propiedad> son los siguientes:

107

NOMBRE_HOJA: Nombre de la pestafia de la hoja. Si no se especifica se le pone el texto Datos.
PASSWORD_HOJA: Permite proteger la hoja contra modificaciones con la contrasefia indicada
en <valor>. A nivel de estilo, se puede indicar que a un determinado estilo de celdas no se aplique
la proteccion.

APAISADO: Si se pasa el valor S se configuran las propiedades de la hoja para impresion en
apaisado. El valor por defecto es N.

TAMANO_PAPEL: Tamaio de la hoja para la configuracion de la impresion. Se le puede pasar

los siguientes valores: PKXLS.LETTER_PAPERSIZE, PKXLS.LEGAL PAPERSIZE,
PKXLS.EXECUTIVE_PAPERSIZE, PKXLS.A4 PAPERSIZE (Valor por defecto), PKXLS.A5_PAPERSIZE,
PKXLS.ENVELOPE 10 PAPERSIZE, PKXLS.ENVELOPE DL _PAPERSIZE,

PKXLS.ENVELOPE _CS PAPERSIZE, PKXLS.ENVELOPE MONARCH_PAPERSIZE

FILA FIN REP_TITULOS: Numero de filas de la hoja que se repiten en cada pagina en la
impresion.

COLUMNA_BLOQUEQO: Indica hasta que columna se debe de bloquear la hoja al hacer scroll.
FILA BLOQUEO: Indica hasta que fila se debe de bloquear la hoja al hacer scroll.
AUTOFILTRO: Permite indicar a nivel de hoja una zona de autofiltro. Las coordenadas se
indicaran en forma de cadena de texto separada por comas de la siguiente forma: ‘fila
inicial,columna inicial,fila final,columna final’. Por ejemplo '4,1,34,5' indicara que se aplique
autofiltro desde la fila 4 a la 34 y desde la columna 1 ala 5.

ID_FUENTE_COMENTARIOS: Codigo de la fuente obtenido con pkxls.crea_fuente a aplicar
a los comentarios de las celdas de la hoja.

ANCHO_COMENTARIOS: Ancho de los comentarios de las celdas por defecto en la hoja. El
ancho se indica segun el ancho de la celda a la que se le afiade el comentario y del ancho de las
celdas que se encuentran a su derecha, por tanto, si se indica 3, se tomara como ancho la suma del
ancho de la celda a la que se la asigna el comentario mas el ancho de las 2 celdas contiguas a la
derecha.

ALTO_COMENTARIOS: Alto de los comentarios de las celdas por defecto en la hoja. El alto
se indica segun el alto de la fila de la celda a la que se le afiade el comentario y del alto de las filas
de las celdas que se encuentran abajo, por tanto, si se indica 3, se tomard como alto la suma del
alto de la fila de la celda a la que se la asigna el comentario mas el alto de las 2 filas contiguas
hacia abajo.

CLONAR_DE_ID HOJA: Creara la hoja partiendo de una copia de la indicada en <valor>. El
<valor> se corresponde con el ID HOJA que se quiere duplicar. NOTA: Esta propiedad
unicamente se utiliza al modificar una hoja de célculo, no se utiliza cuando se crea una hoja de
cero.

@M EDISA

Columna de hoja

Se usarda el procedimiento pkxls.set propiedad columna hoja(<id hoja>, <numero columna>,
<propidad>, <valor>). Es necesario pasar en el parametro <id_hoja> el identificador devuelto por la funcion
pkxls.crea_hoja. Los valores que puede tomar <propiedad> son los siguientes:

saL

ANCHO_COLUMNA: Si se especifica un ancho determinado para una columna lleva implicito
que se desactiva el dimensionado automatico de la columna, el pardmetro <valor> sera un dato
numérico, y se especifica en 1/256 partes de caracter, por lo que si queremos dar un ancho de 1
caracter habria que indicar un valor de 256, aunque esa medida es un poco relativa a la fuente.
DESACTIVAR_AUTOSIZE: Por defecto una vez terminado de procesar el sql se ajusta el
tamafio de las columnas al valor mas largo, este funcionamiento por defecto se puede deshabilitar
para una determinada columna pasando en <valor>'S'.

FACTOR_AJUSTE_ANCHO: Hay casos en los que no se puede hacer un autosize de las
columnas (Forms 12, y cuando se limita el nimero de filas en memoria), la libreria lo que hace es
intentar un ajuste aproximado calculando un ancho sobre la celda en la que puso el valor con mas
caracteres multiplicando por 256, con esta propiedad se puede cambiar ese valor de ajuste.
COLUMNA_FIN_GRUPO: Crea una agrupacion de columnas entre la columna
<numero_columna> y la columna especificada en <valor>. Por lo general esta funcionalidad se
utiliza cuando hay por ejemplo la columna 8 con base, la columna 9 con importe impuesto y la 10
con el total, para que agrupe la 8 y la 9 y s6lo muestre la 10 hay que ejecutar lo siguiente:
pkxls.set_propiedad columna hoja(v_id sqll,8, 'COLUMNA_FIN_ GRUPO', 9);

Se usara el procedimiento pkxls.set_propiedad sql(<id_sql>, <propiedad>, <valor>). Es necesario pasar en
el parametro <id_sql> el identificador devuelto por la funcién pkxls.crea sql. Los valores que puede tomar
<propiedad> son los siguientes:

108

SQL: SELECT que se ejecutara para extraer los datos de la base de datos para ponerlos en la hoja
de calculo.

SQL_BIG: Es excluyente con SQL. La propiedad SQL tiene la limitacién de un tamafio de 32767
bytes, si la SQL es de mayor tamafio se tiene que usar SQL_BIG, de forma que la SQL se divida
en partes y por cada parte se le pasara a la libreria usando SQL_BIG, por lo tanto, SQL sélo se
puede pasar una vez por cada SQL, pero SQL_BIG se puede llamar tantas veces como partes en
las que se divida la SQL.

LIMITAR_NUMERO_REGISTROS: Permite indicar el nimero de registros maximos a
procesar, si la SQL devuelve mas de los registros indicados seran ignorados.
ALTO_FILA_TITULOS: Permite indicar en <valor> el alto en pixeles que debe de tener la fila
de titulos asociada a la consulta SQL.

ALTO_FILA_CABECERA_TITULOS: En el caso de definirse agrupacion de titulos en
cabecera, se permite indicar en <valor> el alto en pixeles para la final de agrupacion.
ALTO_FILA: Permite indicar en <valor> el alto en pixeles que deben de tener todas las filas
asociadas a la consulta SQL.

SQL_TITULOS _COLUMNAS: Por defecto al procesar una SQL lo primero que hace es poner
los titulos de las columnas, para que no los ponga hay que pasar en <valor>'N'.
SQL_ESTILO_TITULOS: Indica el estilo de las celdas de titulo para la SQL. Hay que pasar en
<valor> el valor devuelto por pkxls.crea estilo(). Si se indica esta propiedad se ignoran las

siguientes propiedades a nivel de archivo: SQL_TITULOS NEGRITA, SQL_TITULOS_SUBRAYADO,
SQL_TITULOS_BORDE_SUP, SQL_TITULOS_BORDE_INF, SQL_TITULOS_BORDE_DER,
SQL_TITULOS_BORDE_IZQ, SQL_ROTACION_TITULO.

SQL_AGRUPAR_EN PRIMERA_COLUMNA: Si se usan agrupaciones indica como se
realiza la ruptura. Los posibles valores son:
o N: Es el valor por defecto. Cuando se cambia de nivel de agrupacion las columnas de los
niveles superiores se dejan en blanco

@M EDISA

o S:Todas las agrupaciones las hace en la primera columna dejando espacios segun el nivel
de agrupacion.

o T: Se hace la agrupacion para la totalizacion, pero se muestran todos los datos, es decir,
lo mismo que si no hubiese agrupacion, pero con totalizaciones parciales.

e SQL _TOTALIZAR: Por defecto se generan totales de todos los campos numéricos, para
desactivar este funcionamiento hay que pasar en <valor> 'N', de esa forma la sql no genera ninguin
tipo de total.

e SQL_DESP_Y_INICIAL: Con esta propiedad se puede indicar cuantas filas en blanco se dejaran
antes de poner la primera fila generada por la sql, el valor por defecto es 0.

e SQL_COLUMNA_SELECTOR_ESTILO: Si se pasa 'S' en <valor> quiere decir que la tltima
columna de la SQL es la que indica el estilo de las hojas, por lo que no sera trasladada a la Excel.
La columna debera de ser de tipo texto y tendra el siguiente formato:

o columnaX:codigo de estilo|columnaY:codigo de estilo|...|columnaZ:codigo de estilo
o Ejemplo: 0:ROJO|2:AZUL (A la columna 2 se le aplica el estilo con codigo AZUL y al
resto de las columnas se le aplica el estilo con codigo ROJO.

e SQL_AUTOFILTRO: Pasando el valor ‘S’, se activa la funcionalidad de Filtros de la hoja de
calculo para el rango de filas que utiliza la SQL. NOTA: Si a nivel de hoja se ha definido la
propiedad “PASSWORD_HOJA”, el autofiltro unicamente se tendra en cuenta cuando a nivel de
archivo se indica ‘S’ en “USAR_CONEXION DIRECTA” y no se indica
“NUMERO_FILAS EN_MEMORIA”.

Grupos de titulos de columnas

Los grupos de titulos permiten afiadir una fila anterior a la fila de titulos en la que se agrupan las columnas
de una SQL con un texto. Cada agrupacion puede tener un estilo diferente, en el caso de no indicar un estilo
se utilizara el genérico para titulos.

Si las columnas con el mismo tipo son contiguas las agrupa y si hay columnas intermedias que no
pertenezcan al grupo se generaran grupos adicionales.

Se usard el procedimiento pkxls.set propiedad grupo col sql (<id grupo>, <propiedad>, <valor>). Es
necesario pasar en el parametro <id _grupo> el identificador devuelto por la funcién

pkxls.crea_grupo_columnas_sql, este indientifcador habra que indicarlo a cada columna de la SQL que
vaya a pertenecer al grupo. Los valores que puede tomar <propiedad> son los siguientes:

e TITULO: Texto que se va a visualizar al grupo.
o ESTILO: Identificador del estilo visual a aplicar al grupo. Ver “Fuentes y Estilos”.

Columna de la SQL

Se usara el procedimiento pkxls.set propiedad columna(<id_sql>, <numero columna>, <propiedad>,
<valor>). Es necesario pasar en el parametro <id sql> el identificador devuelto por la funcion
pkxls.crea_sql.

El parametro <numero_columna> identifica el nimero del campo que saca la select comenzando a contar
en l.

Los valores que puede tomar <propiedad> son los siguientes:

e SQL TITULO _COLUMNA: Por defecto se pone el titulo que se extrae de la sql, pero si se
especifica esta propiedad prevalece sobre el alias que tenga el campo en la sql.

e SQL_COMENTARIO_TITULO_COLUMNA: Comentario a incluir en la celda que tenga el
titulo de la columna en la hoja de calculo.

e SQL_ROTACION_TITULO: Angulo de rotacién del titulo, por ejemplo 90 para ponerlo en
vertical.

e SQL PONER _TITULO: Si a nivel de SQL no se ha desactivado la impresion de los titulos se
puede deshabilitar para un campo en concreto pasando en <valor> 'N'.

109

@M EDISA

110

SQL_AJUSTAR _TEXTO: Si es una columna de texto se puede hacer que el texto se ajuste a la
columna, para ello hay que pasar S en <valor>.

SQL_DESACTIVAR AUTOSIZE (OBSOLETO: Se deberia usar la propiedad
ANCHO_COLUMNA de PKXLS.SET_PROPIEDAD_ COLUMNA_HOJA): Por defecto una
vez terminado de procesar el SQL se ajusta el tamafo de las columnas al valor mas largo, este
funcionamiento por defecto se puede deshabilitar para una determinada columna pasando en
<valor>'S".

SQL_DESACTIVAR_TOTALIZACION: Todas las columnas numéricas se totalizan, se puede
deshabilitar para una determinada columna pasando en <valor>'S'".
SQL_DESACTIVAR_SUBTOTAL: Todas las columnas numéricas se subtotalizan. Se puede
deshabilitar la subtotalizacion para una determinada columna pasando en <valor>'S'.
SQL_ANCHO_COLUMNA (OBSOLETO: Se deberia usar la propiedad
ANCHO_COLUMNA de PKXLS.SET_PROPIEDAD COLUMNA_HOJA): Si se especifica
un ancho determinado para una columna lleva implicito que se desactiva el dimensionado
automatico de la columna, el parametro <valor> serd un dato numérico, y se especifica en 1/256
partes de caracter, por lo que si queremos dar un ancho de 1 caracter habria que indicar un valor
de 256, aunque esa medida es un poco relativa a la fuente.

SQL_FIN_GRUPO: Se pueden generar sqls con agrupaciones, en este caso hay que indicar qué
campos son los que finalizan un grupo, es importante el orden de los campos de la SQL, debiendo
mantener el orden de las agrupaciones, ademas es necesario que la SQL lleve un ORDER BY por
todos los campos por los que se agrupe. A mayores se incluyen opciones para generar las
agrupaciones con modalidad colapsada, mostrando inicialmente solamente las filas de
totales/subtotales para dicha agrupacion. Puede contener los siguientes valores:

o N: Valor por defecto, el campo no es fin de agrupacion.

S: El campo es fin de una agrupacion y se generan totales.

V: El campo es fin de una agrupacion y se generan totales y en el total se concatena el
valor de la agrupacion que se esta totalizando.

NT: El campo es fin de una agrupacion y para esa agrupacion no se generan totales.

SC: Mismo caso que “S” con modo colapsado.

VC: Mismo caso que “V” con modo colapsado.

SQL_MASCARA_FORMATO: Mascara de formato de campos numéricos. Hay que indicarla
la en formato Excel, ejemplo: '#,##0.00'

SQL_TIPO: Tipo de la columna. Puede contener los siguientes valores:

o C: Campo normal.

o F: Campo con férmula de totalizacion. En la sql podemos sacar una columna
alfanumérica con una formula, al pasarle este valor se le indica a Excel que la trate como
una féormula y no como un texto normal, ver apartado: Variables disponibles en férmulas.

SQL_FORMULA _TOTAL: Formula a aplicar cuando el campo es numérico y se esta
totalizando, si no se especifica una formula usara la formula de totalizacion por defecto por defecto
que es: SUBTOTAL(9;<columna><fila_inicial>:<columna><fila final>)

SQL_FORMULA _TOTAL_ULT _NIVEL: Formula a aplicar cuando el campo es numérico y
se esta totalizando y aparte en caso de haber agrupaciones esta sera la formula aplicar en el nivel
mas bajo, es decir, se opera directamente con datos y no con resultado de otras formulas, si no se
especifica una formula usard la formula de totalizacion por defecto:
SUM(<columna><fila_inicial>:<columna><fila final>)
SQL_FORZAR_SOLO_PRIMERA_RUPTURA: Unicamente tiene sentido cuando a nivel de
la SQL se ha indicado SQL_ AGRUPAR _EN PRIMERA COLUMNA = T. De esta forma se
puede indicar qué columnas tinicamente se deben de imprimir una unica vez en cada ruptura.
SQL_ESTILO _TITULO: Indica el estilo de la celda de titulo. Hay que pasar en <valor> el valor
devuelto por pkxls.crea_estilo(). Si se indica esta propiedad se ignoran las siguientes propiedades
a nivel de archivo: SQL TITULOS NEGRITA, SQL_TITULOS SUBRAYADO, SQL_TITULOS BORDE_SUP,

O O O O 0 O

@M EDISA

SQL_TITULOS_BORDE_INF, SQL_TITULOS_BORDE_DER, SQL_TITULOS_BORDE_IZQ,
SQL_ROTACION_TITULO y la propiedad SQL_ESTILO_TITULOS a nivel de SQL.

e SQL_IMAGEN: Indica si el campo es de tipo BLOB y contiene una imagen que debe de ser
exportada a la hoja de calculo. Hay que pasar en <valor>'S' para activarlo. NOTA: Requiere que
se establezca conexion directa.

e SQL_FORZAR_ALTO_IMAGEN: En el caso de haber indicado SQL_IMAGEN con el valor
S, se puede forzar que se ajuste el alto de la imagen al valor indicado en Pixeles en <valor>.

e SQL_TIPO_AJUSTE_IMAGEN: Si se indico SQL._IMAGEN con el valor S, se puede indicar

como debe de comportarse la imagen al redimensionar o mover las celdas, en <valor> se puede

indicar uno de estos tres valores:
o DONT_MOVE_AND_RESIZE: No se mueve ni se redimensiona.
o MOVE_AND_RESIZE: Se mueve y redimensiona con las celdas.
o MOVE_DONT_RESIZE: Se mueve con las celdas, pero no se redimensiona la imagen
en el caso de que cambie de tamaiio la celda.

ID_GRUPO: Identificador del grupo de la agrupacion de titulos de columnas a la que pertenece

la columna.

A nivel de formula.

Se usara el procedimiento pkxls.set propiedad formula_ total(<id formula>, <propiedad>, <valor>). Es
necesario pasar en el parametro <id formula> el identificador devuelto por la funcién
pkxls.crea formula total sql(<id sql>). Los valores que puede tomar <propiedad> son los siguientes:

e FORMULA: Texto de la formula. Ver apartado: Variables disponibles en formulas.

e FORMULA_ULTIMO_NIVEL: En caso de haber agrupaciones sera la formula que se aplica en
el nivel mas bajo, cuando tiene que operar directamente con datos y no con el resultado de otras
formulas. Ver apartado: Variables disponibles en férmulas.

e IMPRIMIR _EN_AGRUPACION: Por defecto cuando se crea una formula se va a imprimir en
los totales del informe y en las agrupaciones, para desactivar una férmula en las agrupaciones hay
que pasar 'N' en <valor>.

e IMPRIMIR _EN _TOTAL: Por defecto cuando se crea una formula se va a imprimir en los totales
del informe y en las agrupaciones, para desactivar una formula en los totales del informe hay que
pasar 'N' en <valor>.

e MASCARA_FORMATO: Por defecto cuando se totaliza una columna numérica se usa la misma
mascara que la que hay especificada para la columna, para cambiar ese criterio para una
determinada formula hay que pasar en <valor> la mascara de formato a aplicar.

e TITULO: Por defecto se le pone como titulo a la fila de totalizacion el titulo de la columna, para
cambiar el titulo para una determinada férmula hay que pasarlo en <valor>.

A nivel de columna de formula.

Se wusara el procedimiento pkxls.set propiedad columna total(<id formula>, <numero columna>,
<propiedad>, <valor>). Es necesario pasar en el parametro <id formula> el identificador devuelto por la
funcion pkxls.crea formula total sql. El parametro <numero columna> identifica el nimero del campo
que saca la SELECT comenzando a contar en 1.

Los valores que puede tomar <propiedad> son los siguientes:

e FORMULA: Formula a aplicar cuando el campo es numérico y se esta totalizando, en caso de no
especificarse se usara la formula indicada en pkxls.set propiedad formula total. Ver apartado:
Variables disponibles en formulas. Si se le pasa el valor STD se aplica la férmula estandar.

e FORMULA_ULTIMO_NIVEL: En caso de haber agrupaciones sera la formula que se aplica en
el nivel mas bajo, cuando tiene que operar directamente con datos y no con el resultado de otras
formulas. En caso de no especificarse se usara la féormula indicada en
pkxls.set_propiedad formula total. Ver apartado: Variables disponibles en férmulas. Si se pasa el
valor STD se aplica la formula estandar de ultimo nivel.

111

@M EDISA

e MASCARA_FORMATO: Por defecto cuando se totaliza una columna numeérica se usa la misma
mascara que la que hay especificada para la columna, para cambiar ese criterio para una
determinada formula hay que pasar en <valor> la mascara de formato a aplicar.

Variables disponibles en formulas.

Para construir las formulas de forma dinamica haciendo disponemos de las siguientes variables que seran
sustituidas antes de ser asignadas como formula a la celda:

e <fila_inicial>: Numero de fila en la que comienza el grupo. Variable alternativa: <fini>

e <fila_final>: Numero de fila en la que termina el grupo. Variable alternativa: <ffin>

e <fila>: Numero de fila en la que va a poner la formula. Variable alternativa: <fI>

e <columna>: Columna en que se va a poner la formula. Variable alternativa <cl>

e <codigo_ruptura>: Cddigo de la ruptura que se esta totalizando, el c6digo de ruptura se almacena
en la columna IV. Variable alternativa <er>

Se pueden usar operaciones para desplazar el valor de una variable, por ejemplo, si queremos coger la
columna anterior a la en que se va a poner la formula se pondria <columna-1>.

Formulas matriciales.

Se puede indicar que la formula es de tipo matricial (el equivalente en Excel a validar la formula con Control
+ Mayusculas + INTRO) metiendo la féormula entre llaves “{“ y “}”., Por ejemplo: {SUM(<columna-
2><fila-2>:<columna-2><fila-1>*<columna- 1 ><fila-2>:<columna- 1><fila-1>)}

Si la formula matricial tiene salida a un rango de celdas, este rango de celdas se puede indicar al principio
metiendo el rango también entre llaves “{“ y “}”. Ejemplo: {{D3:D5}SUM(<columna-2><fila-
2>:<columna-2><fila-1>*<columna-1><fila-2>:<columna-1><fila-1>)}

IMPORTANTE: Las férmulas matriciales no se pueden utilizar cuando se indica
USAR_CONEXION_DIRECTA junto a un numero de registros en memoria.

Ejemplo 1:

DECLARE
v_id hoja NUMBER;
BEGIN
pkxls.inicializa;
pkxls.set propiedad excel ('DIRECTORIO', 'c:\temp');
pkxls.set propiedad excel ('ARCHIVO', 'prueba.xls');
v_id hoja := pkxls.crea hoja();
pkxls.excel celda(v_id hoja, 0,
pkxls.excel celda(v_id_hoja, 1,
pkxls.excel celda(v_id_hoja, 2,
pkxls.excel celda(v_id_hoja, 0,
(1,
(2,

, 'N', 'P1', 10);
, 'N', 26, 10);
, 'N', 256, 10);
, 'N', 'P2', 10);
pkxls.excel celda(v_id_hoja, , 'N', 22, 10);
pkxls.excel celda(v_id hoja, , 'N', 233, 10);
pkxls.excel celda(v_id hoja, 3, 2, 'F', '{{D3:D5}SUM(<columna-2><fila-2>:<columna-2><fila-1>*<columna-
1><fila-2>:<columna-1><fila-1>)}"', 10);
pkxls.generar xls();
END;

= - P O oo

112

@M EDISA

Ejemplo 2:

DECLARE
v_id_hoja PLS_INTEGER;
v_id sql PLS_INTEGER;

v_1id formula PLS_INTEGER;

BEGIN
pkxls.inicializa;
pkxls.set_propiedad _excel ('DIRECTORIO', 'c:\temp');

pkxls.set_propiedad excel ('ARCHIVO', 'prueba.xls');
v_id hoja := pkxls.crea_hoja();
v_1id sql := pkxls.crea_sqgl(v_id_hoja);

pkxls.set_propiedad _sqgl(v_id_ sqgl, 'SQL', 'SELECT articulo, uni_seralm, precio_presentacion

FROM albaran_ventas_lin
WHERE rownum <= 100");

pkxls.set_propiedad columna(v_id _sgl, 2, 'SQL_DESACTIVAR TOTALIZACION', 'S');

v_id formula := pkxls.crea_ formula_total sqgl(v_id sql);

pkxls.set_propiedad_columna_total (v_id_formula, 3, 'FORMULA_ULTIMO NIVEL', ' {SUM (<columna-
1><fila inicial>:<columna-1><fila_ final>*<columna><fila_inicial>:<columna><fila_ final>)}"');

pkxls.generar_ xls();
END;

Asignar valores sin ser obtenidos de una SQL a determinadas celdas.

Hay un método complementario a la opcion de cubrir la Excel usando datos extraidos de una SQL, este
método permite ir indicando las posiciones x ¢ y de la celda y asignarle un valor. Se puede dar valor
mediante este método a tantas celdas como sea necesario.

Se usara el procedimiento: pkxls.excel celda(<id_hoja>, <x>, <y>, <tipo>, <valor>, <posicion>, <estilo>);

e <id_hoja>: Identifica la hoja en que se va a crear la celda, sera el identificador de la hoja que se
ha obtenido con pkxls.crea_hoja.

e <x>: Coordenada x de la celda en la hoja, la primera celda es la 0.

e <y>: Coordenaday de la celda en la hoja, la primera celda es la 0.

e <tipo>: Indica el formato que va a tener la celda. Puede contener los siguientes valores:

o C:Indica que es un campo de datos normal.

o T: Indica que es un campo de titulo.

o F: Indica que es un campo que debe de evaluarse como formula. Se pueden usar las
etiquetas <fila>y <columna>.

o I:Imagen. En <valor> se ha de indiciar una SQL que obtenga una tinica fila con un campo
de tipo BLOB que contenga la imagen a mostrar. La SQL puede tener a mayores del
campo BLOB campos que indiquen como se ha de ajustar la imagen en la hoja de calculo,
estos campos deben tener los siguientes alias:

= FORZAR ALTO_IMAGEN: Campo numérico que indique el alto que debe
de tener la imagen. El ancho se ajustard proporcionalmente.
= TIPO_AJUSTE_IMAGEN: Campo alfanumérico que indica como debe de
moverse la imagen en el caso de que se redimensione o mueva la fila o columna
a la que esta asociada. Puede contener los siguientes valores:
e DONT_MOVE_AND_RESIZE: No se mueve ni se redimensiona.
e MOVE_AND_RESIZE: Se mueve y redimensiona con las celdas.
e MOVE_DONT _RESIZE: Se mueve con las celdas, pero no se
redimensiona la imagen en el caso de que cambie de tamafio la celda.

OBSERVACIONES:

La generacion con imagenes unicamente estda disponible cuando se wutiliza la propiedad
USAR_CONEXION_DIRECTA con el valor S.

Una imagen queda anclada a una serie de columnas por lo que puede que se distorsione en el momento de
ajustar el ancho a las columnas. Para evitarlo hay que desactivar el autosize de las columnas de la hoja de
calculo o asignar un ancho fijo a las columnas para que se ajusten al principio de la generacion y ya quede
la imagen anclada con el ancho correcto. Ver propiedades a nivel de columna de hoja.

113

@M EDISA

= TIPO_AJUSTE_FILA COLUMNA: Campo alfanumérico que indica como
debe de comportarse la fila y columna a la que se asocia la imagen:

e OVERLAY_ROW_AND_ COLUMN: La filay columna no se adapta
a la imagen, por lo que si la imagen es mayor no afecta al tamafio que
tenga la fila y columna y simplemente ocupard las filas y columnas
contiguas necesarias para mostrarse.

e EXPAND_ROW_AND_ COLUMN: Ampliar el tamafio de la fila y
columna lo necesario para que entre la imagen.

e EXPAND_COLUMN: Ampliar el tamafio de la columna lo necesario
para que entre la imagen. Si el alto de la fila es menor que el alto de la
imagen ocupara las filas contiguas necesarias para mostrarse.

e EXPAND_ROW: Ampliar el tamafio de la fila lo necesario para que
entre la imagen. Si el ancho de la columna es menor que el ancho de la
imagen ocupara las columnas contiguas necesarias para mostrarse.

EJEMPLO: SELECT imagen_report, 50 forzar alto_imagen, 'DONT_MOVE_AND_ RESIZE'
tipo_ajuste_imagen, 'OVERLAY_ROW_AND_COLUMN'tipo_ajuste_fila columna FROM empresas_logo WHERE
codigo_empresa="'013'

e <valor>: Contenido de la celda, puede ser numérico o alfanumérico.
e <posicion>: Indica en que momento se va a escribir en la celda, hay 5 posibilidades:

o 10: Escribe antes de procesar las sqls que tiene asignadas la hoja.

o 20: Escribe después de procesar las sqls que tiene asignadas la hoja, pero antes de hacer
el autosize de las columnas, por lo que el tamafio de las celdas se vera afectado por el
contenido asignado por este procedimiento.

o 25: Igual que el 20 pero el valor de la coordenada y es relativa a la tltima fila impresa en
la hoja.

o 30: Se escribe después de procesar las sqls que tiene asignadas la hoja y después de
haberse ejecutado el autosize, por lo que los valores asignados por este procedimiento no
afectan al autosize.

o 35:Igual que el 30 pero el valor de la coordenada y es relativa a la ultima fila impresa en
la hoja.

o <estilo>: Codigo de estilo a aplicar a la celda. (ver seccion “Fuentes y Estilos™).

También se pueden indicar valores a celdas siendo las coordenada <y> en relacion a una determinada SQL
(desde entorno 6.2.5), para ello se utilizara el procedimiento pkxls.excel celda sql(<id_sql>, <x>, <y>,
<tipo>, <valor>, <posicion>, <estilo>);

e <id_sql>: Identifica la SQL sobre la que debe ser relativa la coordenada <y>.
e <x>: Coordenada x de la celda de la hoja, la primera celda es la 0.
e <y>: Coordenada relativa al inicio o fin de los valores de la SQL.
e <tipo>: Igual que en pkxls.excel celda.
e <valor>: Igual que en pkxls.excel celda.
e <posicion>: Indica en qué momento se va a escribir la celda.
o 15: Antes de comenzar a procesar la SQL, por tanto, se escribird al principio de los
valores de la SQL.
o 25: Después de procesar la SQL, por tanto, se escribira al final de los valores de la SQL.
o <estilo>: Igual que en pkxls.excel celda.

114

@M EDISA

Ejemplo:

DECLARE
v_1id hoja NUMBER;

BEGIN
pkxls.inicializa;
pkxls.set_propiedad excel ('DIRECTORIO', 'c:\temp');
pkxls.set_propiedad excel ('ARCHIVO', 'prueba.xls');
v_id hoja := pkxls.crea_hoja();

pkxls.excel celda(v_id_hoja, 0, 0, 'T', 'Valor 1', 10);
pkxls.excel celda(v_id_hoja, 1, 0, 'T', 'Valor 2', 10);
pkxls.excel celda(v_id_hoja, 2, 0, 'T', 'Total', 10);
pkxls.excel celda(v_id_hoja, 0, 1, 'N', 100, 10);
pkxls.excel celda(v_id_hoja, 1, 1, 'N', 200, 10);
pkxls.excel celda(v_id_hoja, 2, 1
pkxls.generar_ xls();

END;

, 'F', 'SUM(<columna-2><fila>:<columna-1><fila>)', 10);

’

Ejemplo con pkxls.excel_celda_sql:

PROCEDURE test IS
v_id hoja PLS_INTEGER;
v_id sqll PLS_INTEGER;
v_id sql2 PLS_ INTEGER;
BEGIN
pkxls.inicializa (TRUE) ;
pkxls.set_propiedad _excel ('DIRECTORIO', 'c:\temp');

pkxls.set_propiedad_excel ('ARCHIVO', 'prueba.xls');

v_id hoja := pkxls.crea hoja();

v_id sqll := pkxls.crea_sql(v_id hoja);
pkxls.set_propiedad sqgl(v_id sqll, 'SQL', 'SELECT * FROM DIARIOS');
v_id sql2 := pkxls.crea_sql(v_id hoja);

pkxls.set_propiedad sqgl(v_id sql2, 'SQL', 'SELECT * FROM DIARIOS');
pkxls.excel_celda_sql(v_id_sqll,0,0,'C','TEXTO FIJO AL PRINCIPIO DE LA PRIMERA SQL', 15);
pkxls.excel celda_sql(v_id_sqgl2,0,0,'C', 'TEXTO_FIJO AL PRINCIPIO DE LA SEGUNDA SQL', 15);
pkxls.excel celda_sql(v_id_sqll,0,0,'C','TEXTO FIJO AL FINAL DE LA PRIMERA SQL', 25);
pkxls.excel celda_sql(v_id_sql2,0,0,'C','TEXTO FIJO AL FINAL DE LA SEGUNDA SQL', 25);
pkxls.excel celda(v_id _hoja,0,0,'C','TEXTO FIJO AL FINAL DE TODAS LAS SQLS',25);
pkxls.generar xls();

END;

Combinar celdas

Se pueden realizar agrupaciones de celdas usando la funcién (devuelve un nimero que identifica la
agrupacion) pkxls.pkxls.crea region(<id_hoja>, <fila inicial>, <columna inicial>, <fila_final>,
<columna_final>);

e <id_hoja>: Identifica la hoja en la que se van a combinar las celdas.

e <fila_inicial>: Numero de fila en la que se encuentra la celda superior izquierda de la agrupacion.
La primera fila tiene el nimero 0.

e <columna_inicial>: Numero de columna en la que se encuentra la celda superior izquierda de la
agrupacion. La primera columna tiene el numero 0.

e <fila_final>: Numero de fila en la que se encuentra la celda inferior derecha de la agrupacion.

e <columna_final>: Numero de columna en la que se encuentra la celda inferior derecha de la
agrupacion.

115

@M EDISA

Ejemplo:

DECLARE
v_id_hoja PLS_INTEGER;
v_1id region PLS_INTEGER;
v_1id_fuente NUMBER;
v_id_estilo_sup NUMBER;
v_id estilo_inf NUMBER;

BEGIN
pkxls.inicializa;
pkxls.set_propiedad excel ('DIRECTORIO', 'c:\temp');
pkxls.set_propiedad _excel ('ARCHIVO', 'prueba.xls');
v_id_hoja := pkxls.crea_hoja();
v_1id fuente := pkxls.crea_ fuente();
pkxls.set_propiedad fuente(v_id_fuente, 'NEGRITA', pkxls.boldweight bold);
v_id estilo_sup := pkxls.crea_estilo();

pkxls.set propiedad estilo(v_id _estilo_sup, 'FUENTE', v_id fuente);

pkxls.set_propiedad estilo(v_id estilo_sup, 'ALINEACION_ HORIZONTAL', PKXLS.ALIGN_CENTER);
pkxls.set propiedad estilo(v_id estilo_sup, 'BORDE_SUPERIOR', PKXLS.BORDER THIN) ;
pkxls.set_propiedad estilo(v_id_estilo_sup, 'BORDE_IZQUIERDO', PKXLS.BORDER_THIN) ;
pkxls.set_propiedad estilo(v_id_estilo_sup, 'BORDE_DERECHO', PKXLS.BORDER THIN) ;

v_1id estilo_inf := pkxls.crea_estilo();

pkxls.set_propiedad estilo(v_id_estilo_inf, 'FUENTE', v_id fuente);

pkxls.set_propiedad estilo(v_id_estilo_inf, 'ALINEACION_HORIZONTAL', PKXLS.ALIGN_CENTER) ;
pkxls.set_propiedad estilo(v_id_estilo inf, 'BORDE_INFERIOR', PKXLS.BORDER_THIN) ;
pkxls.set_propiedad estilo(v_id_estilo_inf, 'BORDE_IZQUIERDO', PKXLS.BORDER_THIN) ;
pkxls.set propiedad estilo(v_id _estilo_inf, 'BORDE_DERECHO', PKXLS.BORDER_THIN) ;

v_id_region := pkxls.crea_ region(v_id hoja, 1, 1, 1, 2);
v_id_region := pkxls.crea_ region(v_id hoja, 2, 1, 2, 2);
pkxls.excel celda(v_id_hoja, 1, 1, 'C', 'FILA 1', 30, v_id estilo_sup);
pkxls.excel celda(v_id_hoja, 2, 1, 'C', '', 30, v_id estilo_sup);
pkxls.excel celda(v_id_hoja, 1, 2, 'C', 'FILA 2', 30, v_id estilo_inf);
pkxls.excel celda(v_id_hoja, 2, 2, 'C', '', 30, v_id estilo_inf);

(

pkxls.generar xls();
END;

Constantes
Colores

Los colores se pueden indicar de varias formas (NOTA: En formato XLSX se aplicara el color exacto
indicado, pero en formato XLS se aplicara el que mas se aproxime dentro de la paleta de colores disponible):

e (Cddigo de color definido en la vista V_COLORES_ERP. Ejemplo: RED 300
e Formato hexadecimal de la forma #RRGGBB, ejemplo: #E57373

e Formato RGB, INNNgNNNbNNN, ejemplo: r1229g115b115

e Numero de color de la siguiente tabla de colores prefijados.

cédigo Color cédigo Color Ccédigo Color
64 AUTOMATIC 49 AQUA 45 ROSE

8 BLACK 12 BLUE 57 SEA_GREEN
54 BLUE_GREY 11 BRIGHT_GREEN 47 TAN

60 BROWN 29 CORAL 15 TURQUOISE
24 CORNFLOWER_BLUE 18 DARK_BLUE 9 WHITE

58 DARK_GREEN 16 DARK_RED 30 ROYAL_BLUE
56 DARK_TEAL 19 DARK_YELLOW 40 SKY_BLUE
51 GOLD 17 GREEN 21 TEAL

22 GREY_25_ PERCENT 55 GREY_40_ PERCENT 20 VIOLET

23 GREY_50_PERCENT 63 GREY_80_ PERCENT 13 YELLOW

62 INDIGO 46 LAVENDER 44 PALE BLUE
26 LEMON_CHIFFON 48 LIGHT_ BLUE 61 PLUM

31 LIGHT_CORNFLOWER_ BLUE 42 LIGHT_GREEN 14 PINK

52 LIGHT ORANGE 27 LIGHT_TURQUOISE 10 RED

43 LIGHT YELLOW 50 LIME 53 ORANGE

25 MAROON 59 OLIVE_GREEN 28 ORCHID

116

@M EDISA

Negrita

cédigo

Descripcién

PKXLS.BOLDWEIGHT BOLD

Activa Negrita

PKXLS.BOLDWEIGHT NORMAL

Desactiva negrita

Subrayado

cédigo

Descripcién

PKXLS.U_NONE

Sin subrayado

PKXLS.U_SINGLE

Subrayado simple

PKXLS.U_DOUBLE

Subrayado doble

Borde

cédigo

Descripcién

PKXLS.BORDER_NONE

Sin borde

PKXLS.BORDER_THIN

PKXLS.BORDER MEDIUM

PKXLS.BORDER_DASHED

PKXLS.BORDER_HAIR

PKXLS.BORDER THICK

PKXLS.BORDER_DOUBLE

PKXLS.BORDER_DOTTED

PKXLS.BORDER MEDIUM DASHED

PKXLS.BORDER_DASH DOT

PKXLS.BORDER_MEDIUM DASH DOT

PKXLS.BORDER_DASH_DOT_DOT

PKXLS.BORDER_SLANTED_DASH_DOT

Alineacion Horizontal

cédigo

Descripcién

PKXLS.ALIGN_GENERAL

Normal (horizontal)

PKXLS.ALIGN_LEFT

Izquierda

PKXLS.ALIGN_CENTER

Centrado

PKXLS.ALIGN_RIGHT

Derecho

Alineacion Vertical

cédigo

Descripcién

PKXLS.VERTICAL_ TOP

Arriba

PKXLS.VERTICAL CENTER

Centrado

PKXLS.VERTICAL BOTTOM

Abajo

117

@M EDISA

Ejemplo usando estilos y fuentes:

DECLARE
v_id_hoja NUMBER;
v_id_sql NUMBER;
v_id_fuente NUMBER;
v_id_estilo2 NUMBER;
v_id_estilol NUMBER;
BEGIN

pkxls.inicializa;
pkxls.set propiedad excel ('DIRECTORIO', 'c:\temp');
pkxls.set_propiedad excel ('ARCHIVO', 'prueba.xls');

-- Se inicializan estilos

v_id estilol := pkxls.crea_estilo();
pkxls.set_propiedad_estilo(v_id_estilol, 'COLOR_FONDO', 10);
pkxls.set_propiedad_estilo(v_id_estilol, 'CODIGO', 'ROJO');
v_id_fuente := pkxls.crea_fuente();

pkxls.set_propiedad_fuente(v_id_fuente, 'NEGRITA', pkxls.boldweight_bold);
pkxls.set_propiedad_fuente(v_id_fuente, 'SUBRAYADO', pkxls.u_single);

v_id estilo2 := pkxls.crea_estilo();
pkxls.set_propiedad_estilo(v_id_estilo2, 'COLOR_FONDO', 13);
pkxls.set_propiedad estilo(v_id_estilo2, 'FUENTE', v_id_fuente);

pkxls.set_propiedad_estilo(v_id_estilo2, 'CODIGO', 'AMARILLO');
pkxls.set_propiedad_excel ('ABRIR_EXCEL', 'S');
v_id hoja := pkxls.crea hoja();

-- Se asigna la sgl a la hoja y se indica que la Ultima columna tiene la informacién de estilos

v_id_sqgl := pkxls.crea_sql(v_id_hoja);

pkxls.set_propiedad sql(v_id_sql, 'sQL', 'SELECT codigo, nombre, apertura_cierre, DECODE (apertura_cierre, "'Aa'',
'"'0:ROJO'',"'R'', '"'0:AMARILLO|2:ROJO'') color FROM diarios');

pkxls.set_propiedad sql(v_id_sqgl, 'SQL COLUMNA_ SELECTOR_ESTILO', 'S');

-- Se crean dos celdas con valores fijos con estilos
pkxls.excel celda(v_id hoja, 0, 1, 'C', 'CELDA EN ROJO', 25, v_id_estilol);
pkxls.excel celda(v_id hoja, 1, 1, 'C', 'CELDA EN AMARILLO', 25, v_id_estilo2);
pkxls.generar xls();

END;

Resultado: (Si tiene A en la columna APERTURA_CIERRE pinta el registro de rojo y si tiene R pinta el
registro de amarillo, pero la columna 2 de rojo).

| A B C
APERTURA_CIERRE

OPERACIONES_VARIAS

- RV, R FVR R

[EERNSIERIRENENN CEL DA EN AMARILLO

Preparar en base de datos y ejecutar en Forms

Se puede hacer todo el proceso en codigo de base de datos llamando a pkxlsbd en vez de pkxls y luego
hacer la ejecucion en Forms, de esta forma el codigo queda compatible para ser ejecutado en base de datos
con GAL EXCEL o directamente en el programa de Forms. Una vez se han establecido las propiedades y
antes de llamar al procedimiento generar excel hay que recuperar la configuracion de base de datos
mediante pkxls.recupera_configuracion_pkxlsbd(); y luego ya se podria llamar a pkxls.generar xls();

Hoja de Calculo Simple

Se puede realizar una hoja de calculo muy simple que unicamente tenga una SQL y no sea necesario
especificar ningiin tipo de propiedad a las columnas llamando directamente a
PKXLS.SQL_SIMPLE('<sql>");

Ejemplo:

pkxls.sql simple ('SELECT codigo "Cédigo", nombre "Nombre", apertura_cierre "Tipo" FROM diarios');

118

@M EDISA

Lectura de hojas de calculo

Para leer desde un programa de Forms un archivo de hoja de calculo, habrd que incluir la libreria
“pklibxls.pll”.

Para obtener los datos almacenados en las celdas se usara la funcion “pkxls.cargar_hoja_calculo (p_archivo,
p_numero_hoja, p_ignorar celdas vacias, p_permitir conexion directa, p_en _ias, p_inicializar hojas)”.

e p_archivo: Ruta completa al archivo a cargar. Si la ejecucion es en Forms 12c es importante el
parametro p_en _ias para indicar donde se encuentra el archivo.

e p_numero_hoja: Numero de hoja a cargar, si se pasa a NULL se cargaran todas.

e p_ignorar_celdas_vacias: Si se pasa ‘S’ las celdas vacias seran ignoradas, pero si se pasa ‘N’ se
cargaran con valor NULL.

e p_permitir_conexion_directa: Puede recibir los siguientes valores:

o N: No se utiliza ninguna tabla temporal en base de datos, el archivo se lee en memoria y
se devuelven directamente los valores de las celdas. Este método es el ideal para hojas de
calculo pequenas.

o S: Se intentara hacer la carga a través de una conexion directa de Java a la base de datos,
para archivos muy grandes es la opcion mas rapida.

o R: Igual que “S” pero es exclusivo para archivos XLSX y la velocidad de carga es
infinitamente mas rapida con archivos muy grandes. Este método tiene las siguientes
limitaciones:

= No se evaliian las féormulas antes de hacer la lectura.

= Los campos numéricos se devuelven siempre como caracter y no recupera las
férmulas de las celdas.

= Los valores no se pueden obtener con el método “pkxIsbd.get tabla excel()”,
hay que wusar siempre la consulta SELECT con la tabla
“TABLE(pkxIsbd.get pipe tabla excel())”

e p_en_ias: Si se estd ejecutando en Forms 12¢ indica en donde hace referencia el parametro
“p_archivo”, sien p_en_ias se pasa el valor de TRUE el archivo debe de encontrarse en el servidor
de aplicaciones, si se pasa FALSE el archivo debe de encontrase en el equipo del usuario y para
ser procesado tiene que internamente cargarse en el servidor de aplicaciones para poder ser leido.

e p_inicializar_hojas: Si se pasa TRUE en este parametro, por cada hoja leida llamara a
pkxls.crea_hoja y a pkxls.set_propiedad hoja con la propiedad ‘NOMBRE HOJA’.

Esta funcion carga el archivo en la base de datos y devuelve un VARCHAR?2 con el resultado de la lectura,
siendo OK que la lectura ha sido correcta y ERROR en caso de no poderse realizar la carga.

Para acceder al resultado de la carga, se puede realizar de varias formas.

e A través de una consulta SELECT:

SELECT id hoja hoja, x, y, valor number, valor char
FROM TABLE (pkxlsbd.get pipe tabla excel());
e Recoger un array con los valores de las celdas mediante la funcion “pkxlsbd.get tabla excel()”.
El resultado de la funcion es un array del tipo pkxlsbd.tabla_excel.

Para obtener las hojas que componen la hoja de calculo se wusara la funcion
“pkxls.get nombres_hojas xIs(p_archivo, p_en ias)”.

e p_archivo: Ruta completa al archivo a cargar. Si la ejecucion es en Forms 12¢ es importante el
parametro p_en _ias para indicar donde se encuentra el archivo.

e p _en_ias: Si se estd ejecutando en Forms 12¢ indica en doénde hace referencia el pardmetro
“p_archivo”, sienp _en_ias se pasa el valor de TRUE el archivo debe de encontrarse en el servidor
de aplicaciones, si se pasa FALSE el archivo debe de encontrase en el equipo del.

119

@M EDISA

Esta funcién devolvera un array del tipo PRPANTALLAS.VARCHAR2 TABLA con el ID de la hojay su
nombre. Ejemplo:

DECLARE

t_hojaspkpantallas.varchar2_table;

v_id PLS_INTEGER;
BEGIN
t_hojas := pkxls.get_nombres_hojas_xls('c:\temp\test.xls', FALSE);
IF t_hojas.COUNT() != 0 THEN
v_id := t_hojas.FIRST();

WHILE V_id IS NOT NULL LOOP
pkpantallas.log('id: ' || v_id || ', nombre: ' || t_hojas(i));
v_1id := t_hojas.NEXT(v_id);

END LOOP;

END IF;

END;

IMPORTANTE: Si ya se¢ ha ejecutado PKXLS.CARGAR HOJA CALCULO indicando el parametro
P _INICIALIZAR HOIJAS con el valor TRUE ya no hace falta volver a acceder al archivo, se puede obtener
el numero total de hojas del archivo con pkxls.get propiedad_excel'NUMERO_HOJAS") y al nombre
de cada hoja con pkxls.get_propiedad_hoja(id_hoja, ' NOMBRE_HOJA').

NOTA: Los campos de tipo fecha vienen en como niimero y para convertirlos en fecha hay que sumar ese

ntmero a la fecha TO_DATE('30-12-1899', 'DD-MM-YYYY").

Modificacién de hojas de calculo

Archivo a modificar en el servidor de Forms o en el equipo del usuario

Para modificar desde un programa de Forms un archivo de hoja de calculo (formato XLS), habra que incluir
la libreria “pklibxls.pll”, y ejecutar lo siguiente:

pkxls.inicializa();
pkxls.excel celda(<hoja>, <fila>, <columna>, 'C', <valor>, 30):Se
puede ejecutar tantas veces como celdas se quieran modificar. Los valores comienzan en 1.
pkxls.modifica archivo excel (p_archivo, p_archivo destino,
p_en_ias): Devuelve OK si todo ha ido correcto y ERROR si ha fallado.
o p_archivo: Ruta del archivo a modificar.
o p_archivo_destino: Ruta del archivo en donde se grabara el archivo modificado. Si se
pasa NULL se modificara directamente el archivo indicado en “p_archivo”.
o p_en_ias: Hay que indicar TRUE si el archivo esta en el servidor de aplicaciones y
FALSE si el archivo se encuentra en el equipo del usuario.

Ejemplo:

DECLARE

v_resultado VARCHAR2 (30);

BEGIN

pkxls.inicializa();

pkxls.excel celda(l, 1, 1, 'C', 'PRUEBAl', 30);
pkxls.excel celda(l, 1, 2, 'C', 'PRUEBA2', 30);
pkxls.excel celda(l, 1, 3, 'C', 1234, 30);

’

pkxls.excel celda(l, 2, 3, 'C', 7321, 30);

v_resultado := pkxls.modifica archivo_ excel (p_archivo => 'C:\Temp\formato.xls', p_ archivo destino

'C:\Temp\formato modificado.xls', p_en ias => FALSE);
END;

120

@M EDISA

Archivo de plantilla almacenado en la base de datos

Si el archivo a del que se va a partir para la modificaciéon se encuentra almacenado en la base de datos los
la llamada a pkxls.modifica archivo_excel serd la siguiente:

pkxls.modifica_archivo_excel (p_id_archivo, p_archivo_destino, p_procedimiento _modificacion,
p_trigger modificacion, p_permitir conexion_directa, p_visualizar_archivo)

Devuelve OK si todo ha ido correcto y ERROR si ha fallado. Pardmetros que recibe:

o p_id_archive: Identificador del archivo almacenado en base de datos.

o p_archivo_destino: Ruta del archivo en el equipo del usuario en en donde se grabara el
archivo una vez modificado.

o p_procedimiento_modificacion: Este pardmetro si no se pasa a la llamada se
considerara el valor NULL. Procedimiento de base de datos que se ejecutara para que
aplique los cambios sobre el archivo. En este procedimiento se puede utilizar
pkxlsbd.get tabla excel() para recuperar las celdas y los procedimientos de pkxlsbd para
modificar el archivo.

o p_trigger modificacion: Este parametro si no se pasa a la llamada se considerara el
valor NULL. Trigger personalizado que serd ejecutado en el programa que hace la
llamada. En este procedimiento se puede utilizar pkxlsbd.get tabla excel() para
recuperar las celdas y los procedimientos de pkxls para modificar el archivo.

o p_permitir_conexion_directa: Este parametro si no se pasa a la llamada se considerara
el valor “S’. Si se utiliza p_procedimiento_modificacion o p_trigger modificacion, se
realiza una carga del archivo antes de aplicar la modificacion. Para mas informacion de
este parametro ver la informacion del parametro con este mismo nombre de la funcién
“pkxls.cargar_hoja_calculo”.

o p_visualizar_archivo: Este pardmetro si no se pasa a la llamada se considerara el valor
TRUE. Si se pasa el valor TRUE una vez grabado el archivo en el equipo del usuario se
abrira con la aplicacion asociada al tipo de archivo generado.

Ejemplo:

IF pkxls.modifica_archivo_excel (p_id_archivo => p_id archivo_plantilla,
p_archivo destino => p cli archivo grabar,
p_procedimiento modificacion => 'pkformulasstd.procesar hoja calculo()',
p_permitir conexion directa => 'N') != 'OK' THEN
msg.mensaje ('PROCE', 'GENERAL');
END IF;

Gestion de correos electronicos

Envio

Para el envio es necesario que esté correctamente configurado el servidor SMTP, se puede configurar en
varios niveles, en caso de no estar disponible un servidor SMTP se probara al siguiente nivel:

e Usuario: Mediante el programa MAIL _SENDERS se pueden indicar los parametros para el envio
de correo electronicos:
o Servidor SMTP: Direccion del servidor de SMTP asociado al usuario.
o Puerto: Puerto TCP en el que escucha el servidor SMTP, por defecto el 25.
o Direccion de Correo: Direccion de correo de origen del mensaje.
o Usuario: En caso de que el servidor requiera validacion se introducira el nombre del
usuario del servidor SMTP.
o Password: En caso de que el servidor requiera validacién se introducira la password del
usuario en el servidor SMTP.
o Requiere Validacion: Se activara la check cuando el servidor SMTP requiera de un
usuario y contrasefia para enviar el correo.
e Alerta: Se puede indicar una parametrizacion especifica para una alerta (modulo de alertas). Esta
configuracion se realiza en el mantenimiento de parametros generales del menu, programa

121

@M EDISA

U _MPRMEN, en la pestafia “Notificaciones / Alertas”. Los campos necesarios son iguales que a
nivel de usuario.

e SMTP Genérico: En el mantenimiento de parametros generales de menu se puede indicar un
servidor SMTP Genérico que se usara cuando el Usuario / Alerta no tienen un servidor especifico.

La secuencia de envio es la siguiente:

e [Inicializar.

e Opcionalmente cambiar el remitente del mensaje.
e Incorporar el asunto del mensaje.

e Incorporar el cuerpo del mensaje.

e Indicar los destinatarios.

e Adjuntar archivos.

e Procesar envio.

Inicializar

En primer lugar, se ejecutara la inicializacion del envio del correo electronico con la instruccion:
PK_EMAIL.INICIALIZAR('<cédigo de usuario>');

Opcionalmente cambiar el remitente del mensaje

Para cambiar el remitente que se le asigna por defecto al usuario se puede ejecutar:

PK_EMAIL.SET_EMAIL_ REMITENTE ('<email>"');

Incorporar el asunto del mensaje

Para afiadir el asunto del mensaje se ejecutara:

PK_EMAIL.SET_ASUNTO ('<texto_del asunto>');

Incorporar el cuerpo del mensaje

Para afiadir el texto al cuerpo del mensaje hay que tener en cuenta que puede ir en texto plano, en formato
html o mixto, es decir, va tanto en texto plano como html y el dispositivo receptor mostrard segun sus
capacidades el que mejor se adapte.

Para afadir texto plano al cuerpo del mensaje se utiliza el procedimiento:

PK_EMAIL.SET_CUERPO('<texto plano del cuerpo del mensaje>');

Para afadir texto en formato html se utiliza el procedimiento:
PK_EMAIL.SET_CUERPO_HTML ('<texto html del cuerpo del mensaje>');
Indicar los destinatarios

Para afadir destinatarios se puede ejecutar tantas veces como destinatarios del mensaje existan el
procedimiento:

PK_EMAIL.ADD DESTINATARIO('<tipo>', '<direccién>');

El parametro <tipo> puede contener los siguientes valores:

e TO: Destinatarios principales del mensaje.
e CC: Destinatarios que iran en copia del mensaje.
e BCC: Destinatarios que iran con copia oculta del mensaje.

122

@M EDISA

Adjuntar archivos

Hay varias formas de adjuntar archivos a un mensaje:

e El archivo se encuentra almacenado en Libra en la tabla ARCHIVOS ERP. En este caso se
ejecutara: PK EMAIL.ADD ADJUNTO_ X ID(<id archivo>), en donde <id archivo> es el
identificador del archivo en la tabla ARCHIVOS ERP.

e El archivo se tiene en una variable de tipo BLOB. En este caso se ejecutara:
PK_EMAIL.ADD ADJUNTO BLOB(<variable blob>, <nombre archivo>);

e (OBSOLETA, debe de utilizarse: PK EMAIL.ADD ADJUNTO BLOB). El archivo se
encuentra en un directorio de la base de datos. En este caso se ejecutara:
PK_EMAIL.ADD ADJUNTO('<archivo>'), en donde <archivo> es la ruta completa al archivo a
adjuntar. En el caso de no indicar la ruta completa se asumird que se encuentra en el directorio
parametrizado para adjuntos en pardmetros generales de Libra o en su defecto en BLOB_TEMP.

e Elarchivo que se desea adjuntar es el resultado del proceso de informe del Generador de Informes.
En este caso se ejecutara: PK_EMAIL.ADD ADJUNTO_GI('<p_informe>',
'<p_nombre archivo>', '<p idioma>', '<p _empresa>', '<p usuario>', ‘<p plantilla valores>’,
‘<p_tipo_archivo>’, ‘<p_configuracion>");

o p_informe: Cddigo del informe a ejecutar.

p_nombre_archivo: Nombre del archivo a generar.

p_idioma: Cddigo del idioma a utilizar para las etiquetas

p_empresa: Codigo de la empresa con la que se ejecutara el informe.

p_usuario: Cddigo del usuario con el que se ejecutara el informe.

p_plantilla_valores: Si el informe tiene guardada plantillas de valores, se puede indicar

la plantilla a usar.
o p_tipo_archive: Valores posibles:
= EXCELXML: Genera el archivo en formato hoja de calculo. Si la extension del
archivo es XLS 6 XLSX y estd configurado GAL EXCEL se generara en
formato nativo, salvo que en el informe tenga informado que utiliza tablas
GLOBAL TEMPORARY.

= HTML

= CSV: Separado por comas

= TXT: Texto plano

p_configuracion: Si el informe tiene varias configuraciones de columnas, se puede

indicar en este parametro el cddigo de configuracion de columnas a utilizar.

o O O O O

e}

Se pueden adjuntar tantos archivos al mensaje como sea necesario y también se pueden mezclar llamadas
de ADD_ADJUNTO_X_ID con ADD_ADJUNTO y ADD_ADJUNTO_GI.

NOTA: El directorio en donde se encuentran los archivos deben tener permisos de lectura para el motor de
Java de Oracle, para ello se debe de ejecutar (Si la base de datos estd en Linux cambiar 'directorio*' por
'directorio/*"):

exec dbms_java.grant_permission('usuario LIBRA en maylsculas', 'java.io.FilePermission', 'dir*',6 ‘'read');
Ejemplo:
exec dbms_java.grant_permission('LIBRA','java.io.FilePermission', 'C:\Oracle\dir\blobtemp*', 'read');

Procesar envio.

Para procesar el envio finalmente se ejecutara la funcion: PK_EMAIL.ENVIAR(). El resultado que
devuelve es 'OK' en caso de que el envio se realiza correctamente o 'ERROR' en caso de producirse algun
fallo. En este tltimo caso quedara registrado en LIBRA LOG el motivo del error, también se puede
consultar por codigo el resultado del ultimo envio llamando a la funcion PK_EMAIL.GET ULTIMO_RDO
y el detalle del error llamando a la funcion PK_EMAIL.GET ULTIMO TEXTO ERROR.

123

@M EDISA

Ejemplo:

DECLARE
v_resultado VARCHAR2 (30) ;

BEGIN
PK_EMATIL.INICIALIZAR('EDISA');
PK_EMAIL.SET_ASUNTO ('TEXTO ASUNTO') ;
PK_EMAIL.SET_CUERPO ('CUERPO TEXTO PLANO');
PK_EMAIL.SET_CUERPO_HTML ('<H1>CUERPO HTML</H1>');

PK_EMAIL.ADD DESTINATARIO('TO', 'correo@dominio.com');
v_resultado := PK EMAIL.ENVIAR();
END;

Funciones de control

Existen una serie de funciones de control que permitiran realizar verificaciones antes de enviar el correo,

e PK EMAIL.HAY SERVIDOR SMTP: Se puede ejecutar después de llamar a
PK _EMAIL.INICIALIZAR, y devolvera TRUE en caso de existir un servidor parametrizado para
realizar el envio del correo y FALSE en caso contrario.

e PK HAY REMITENTE: Devuelve TRUE en caso de que exista una direccion de email de remite
del mensaje, FALSE en caso contrario. Se puede ejecutar antes de PK_EMAIL.ENVIAR,

e PK HAY DESTINATARIOS: Devuelve TRUE si se ha especificado algin destinatario al
mensaje y FALSE en caso contrario. Se puede ejecutar antes de PK_EMAIL.ENVIAR.

Descarga

Mediante el paquete PK_EMAIL también se puede realizar la descarga de correos de cuentas POP3. En
primer lugar, se deben de configurar las cuentas POP3 en el mantenimiento de parametros generales de
menu, programa U MPRMEN.

Archivo Opciones Edicién Desplazamiento Consulta Ventana Ayyda

14« 4 » bl Er+ B8 s E® H X L

[@]™ Parametros menu CET
Parémetros Generales Notificaciones / Alertas Gestion de Equipos /... Integraciones Cuentss de Correo P... | Imagenes Piblicas Purgado Tablas Purgado Eventos AQ Refresco Vistas Materi,

Activado
Autentificaciin XOAuth2 Conexién SSL Borrar Mensajes

Cédigo Descripcion Servidor POP3 Puerto| Usuario Contrasefia | Usuario Libra Empresa Funcidn Proceso Mensaje [
mﬁm CRM comerdal EDISA utlook.office3 995% @ a om ¥ EDISA EDISA pk_edi_om.procesar_mensaje_cnv ¥ +
Dispositivo Socket XOAuth2 STD_POPI_365 POP3 OFFICE 365 1d Code
En caso de erTor reenviar correo a la direccion Afiadie prefijo a asunto
Servidor SMTP para reenvio de correo Fecha Ultima Descarga 28/02/2024 17:33:48

e Codigo: Identificador unico que se le asigna la cuenta POP3, este codigo sera necesario luego para
indicar la cuenta de correo de la que se quiere descargar el correo.

e Descripcion: Descripcion breve de la cuenta de correo.

e Servidor POP3: Direccion IP o nombre del servidor de POP3 en donde se encuentra la cuenta.

e Puerto: Puerto TCP en el que escucha el servidor de POP3.

e Usuario: Usuario de la cuenta de correo.

e Password: Contrasefia del usuario de la cuenta de correo.

e Usuario Libra: Codigo del usuario de Libra al que quedaran asociados los archivos adjuntos
descargados.

e Funcion Proceso Mensaje: (Opcional). Funcién de base de datos que se invocara por cada
mensaje una vez descargado para poder automatizar tareas. Esa funcion debe de devolver el
resultado (si es correcto debe devolver OK) y recibe como parametro el ID del mensaje.

124

@M EDISA

Ejemplo:

CREATE OR REPLACE FUNCTION PRUEBA_EMAIL(p_id mensaje NUMBER) RETURN VARCHAR2 IS
BEGIN

RETURN ('OK"') ;
END;

Para lanzar la descarga de los correos de un buzén POP3 se llamara al procedimiento:
PK_EMAIL.PROCESAR SERVIDOR POP3('<cédigo cuenta pop3>'). En <codigo cuenta pop3> se
pasara el codigo de la cuenta configurada en los parametros generales de menu.

Los mensajes quedaran almacenados en las tablas:

e EMAIL_GESTION_CORREOS: Almacena los correos descargados.
o ID: Identificador numérico unico asignado al mensaje.
o CODIGO_SERVIDOR_POP3: Codigo del servidor POP3 del qué procede el mensaje.
o FECHA: Fecha del mensaje.
o FECHA DESCARGA: Fecha en la que se realizo la descarga del mensaje.
o NUMERO_VECES PROCESADO: Numero de veces que se ha ejecutado la “Funcion
Proceso Mensaje” asociada a la cuenta POP3.
o FECHA ULTIMO PROCESO: Fecha en la que se realiz6 la ultima llamada a la
“Funcion Proceso Mensaje”.
o RESULTADO ULTIMO PROCESO”: Resultado que devolvid en la ultima llamada a
la “Funcién Proceso Mensaje”.
REMITENTE: Direccién de correo electronico de la que procede el mensaje.
DESTINARIO: Lista de destinatarios del mensaje.
ASUNTO: Texto del asunto.
TEXTO BODY: Texto del correo electronico en formato de texto plano, si el mensaje
viene en formato HTML exclusivamente este campo estara en blanco.
o TEXTO BODY HTML: Texto del correo electronico en formato HTML, si el mensaje
viene en formato de texto plano exclusivamente este campo estara en blanco.
e EMAIL _GESTION_CORREOS_ADJUNTOS: Almacena los adjuntos de los correos:
o ID: Identificador del mensaje, se utiliza para relacionar los adjuntos con
EMAIL GESTION CORREOS.
o ID_ARCHIVO: Identificador asignado al adjunto en la tabla ARCHIVOS_ERP, que es
el almacenamiento real del archivo.
o NOMBRE_ARCHIVO: Nombre del archivo tal y como venia en el mensaje.

O O O O

Gestion de archivos XML.
Carga de archivo

El proceso de carga de un archivo se basa en su recorrido de forma secuencial, en cada nodo del XML se
puede indicar la forma de procesarlo, insertar registros en una tabla, invocar la ejecucion de una funcién de
base de datos o realizar ambas a la vez.

Inicializacion

En primer lugar, hay que parametrizar la lectura del XML, para ello en primer lugar es obligatorio ejecutar
la instruccion: PKXML.XML INICIALIZA PARSER(p namespace automatico == TRUE).
Configuracion de Nodo

A continuacion, por cada nodo que se quiere contemplar en la lectura hay que parametrizarlo llamando a la
funcion PK_ XML. XML CREA NODO PARSER, esta funcion devuelve un dato de tipo PLS INTEGER
que identifica el nodo y que es necesario identificar para luego poder configurar los items de ese nodo. La
funcion recibe los siguientes parametros:

e p_etiqueta: Este parametro es obligatorio. Es la ruta XPATH completa del nodo a procesar, por
ejemplo: /Clientes/Cliente/AlbaranesCliente/Albaran

125

@M EDISA

p_funcion: Este pardmetro es opcional, en €l se indica la funcién que se debe de ejecutar por cada
nodo indicado en P_ETIQUETA. Los parametros que recibe la funcion son variables y se
identifican mas adelante en la configuracion de los items del nodo (Ver
PK_XML.CREA CAMPO_NODO_PARSER). La funcion debe devolver un VARCHAR?2 con
el texto OK en el caso de que el proceso sea correcto y otro valor en caso de que se produzca un
error, en este ultimo caso se cancelara el proceso de lectura del XML.

p_tabla: Este parametro es opcional. Nombre de la tabla en donde se debe de insertar el registro
que contiene el nodo indicado en P_ ETIQUETA. Los campos se identifican mas adelante en la
configuracion de los items del nodo (Ver PK_XML.CREA CAMPO NODO_ PARSER).
p_ignorar_errores: Si se pasa S en este parametro, un error en un nodo no finaliza el parseo de
todo el XML, sino que se sigue con el siguiente nodo. (Por defecto tiene el valor N, de forma de
que, si no se indica, un error para el parseo).

p_modo_sql: Permite indicar la accion a realizar en la tabla de destino. Los valores posibles son
INSERT (por defecto), UPDATE o MERGE.

p_funcion_exception: Indica una funcién que se va a invocar en caso de que un nodo no se pueda
parsear. Una utilidad clara para esta funcion es guardar los registros que no se puedan insertar. La
firma de la funcion debe contener todos los campos que se parsean en el XML.

Configuracion de Items del nodo

Por cada item del nodo que interese ser almacenado en la tabla o por la funcién parametrizada en
PK XML.XML CREA NODO PARSER hay que parametrizarlo llamando a la funcion
PK XML CREA CAMPO NODO PARSER que devuelve un PLS INTEGER que identifica el campo.
La funcién recibe los siguientes parametros:

126

p_id_nodo: (Obligatorio). Identificador del nodo, devuelto por
PK_XML.XML CREA NODO PARSER.
p_campo: (Opcional). Se utiliza cuando al crear el nodo se ha indicado una Tabla y en este
parametro se indica el campo de la tabla en donde se quiere guardar el valor que tiene el item.
p_parametro: (Opcional). Se utiliza cuando al crear el nodo se ha indicado una funcion, se indica
en qué parametro hay que pasar el valor del item al hacer la llamada a la funcion.
p_valor_fijo: (opcional). En vez de leer el dato de un item del XML se utiliza un valor fijo
proporcionado en este parametro, tanto para hacer el insert en la tabla parametrizada o en el
parametro de la funcion parametrizada.
p_etiqueta_valor: (Opcional). Ruta XPATH completa al campo del que se quiere obtener el valor.
No hay problema en usar un campo que se encuentra en un nodo de nivel anterior o posterior al
nodo que se estd procesando. Ejemplo: /Clientes/Cliente/Codigo
p_tipo: Se usa para indicar el tipo de dato. Si no se indica nada se considera VARCHAR?2. Los
valores posibles son:

o VARCHAR2

o NUMBER
o DATE
o CLOB

p_mascara: Se usa cuando se indica p_tipo => 'NUMBER', indica la méscara de formato con la
que viene el nimero en el XML. Ejemplo: p_mascara =>'999999D90'".
p_nls_numeric_characters: Se usa cuando se indica p_tipo => 'NUMBER', para indicar cual es
el caracter separador de millares y el de decimales, si el nimero viene con el formato 3443.23, hay
que pasar p_nls numeric_characters =>".,".

p_nls_language: Para el parseo de los campos de tipo DATE cuando no se especifica una méscara,
indica la configuracion regional que se utiliza para el parseo a campo date.
p_funcion_transformacion: Funcion PL/SQL a utilizar para transformar una columna. Esta
funcion debe tener un nico parametro de tipo varchar2 en la firma que recibira el valor de la
columna que queremos transformar.

@M EDISA

e p_es_pk: Para las operaciones de MERGE y UPDATE es obligatorio conocer qué campos son
clave primaria en la tabla destino. Este parametro es de tipo booleano, por lo que hay que indicar
TRUE para aquellos campos que sean clave primaria. Si no se indica el parametro se asume que
no es clave primaria.

e p_solo_funcion: Permite para una columna determinada que no se inserte en la tabla destino, y
que su valor solo se pase en el caso de que el parseo del XML tenga como destino una funcioén
PL/SQL, y para la funcién de excepcion. Un ejemplo claro de esto es si en el XML viaja el rowid
de la tabla origen.

Ejecutar el proceso de lectura

El XML para procesar debe de estar almacenado en una variable XMLTYPE, en el paquete PK_XML se
disponen de funciones para cargarlo desde un archivo (PK_XML.CARGA XML DESDE FIC) o desde
una direccion WEB (PK_ XML.LEE XML DESDE URL).

Para invocar la lectura del XML hay que llamar a la funcion PK XML.PARSEAR XML, la funcién
devolvera OK si la lectura se ha realizado correctamente o el cddigo de error devuelto por la funcion que
cancelase el proceso. Ejemplo: v_resultado := PK_ XML.PARSEAR XML(v_xml);

DECLARE
v_xml XMLTYPE;
v_empresa VARCHAR2 (5) := '013"';
v_1id_nodo PLS_INTEGER;

v_1id_campo PLS_INTEGER;
v_resultado VARCHAR2 (30);
BEGIN
v_xml := pk xml.carga_xml desde fic('BLOB_TEMP', 'elXMl.xml');
pk_xml.xml inicializa_ parser (p_namespace_automatico => TRUE) ;
v_id_nodo := pk_xml.xml crea nodo_parser (p_etiqueta => '/Cli/Cl/Albaranes/Albaran',
p_funcion => 'F_PRUEBA_ELIAS_LECTURA_XML',
p_tabla => 'PRUEBA_ELIAS LECTURA_XML') ;
v_1id campo := pk_xml.xml crea_campo_nodo_parser (p_id nodo => v_id_nodo,
p_campo => 'EMPRESA',
p_parametro => 'P_EMPRESA',
p_valor_fijo => v_empresa);
pk_xml.xml crea campo_nodo_parser (p_id nodo => v_id_nodo,
p_campo => 'CODIGO_CLIENTE',
p_parametro => 'P_CODIGO CLIENTE',
p_etiqueta valor => '/Cli/Cl/Codigo');
v_1id campo := pk_xml.xml_crea_campo_nodo_parser (p_id nodo => v_id_nodo,
p_campo => 'NOMBRE CLIENTE',
p_parametro => 'P NOMBRE CLIENTE',
p_etiqueta valor => '/Cli/Cl/Nombre');
v_id campo := pk xml.xml crea campo nodo_parser (p_id nodo => v_id_nodo,
p_campo => 'NUMERO_ALBARAN',
p_parametro => 'P_NUMERO ALBARAN',
p_etiqueta valor => '/Cli/Cl/Albaranes/Alb/No');
v_1id campo := pk xml.xml crea_campo_nodo_parser (p_id nodo => v_id_nodo,
p_campo => 'IMPORTE ALBARAN',
p_parametro => 'P_IMPORTE ALBARAN',
p_etiqueta valor => '/Cli/Cl/Albaranes/Alb/Im');

v_id_ campo :

v_resultado := pk xml.parsear_ xml (v_xml);
pkpantallas.log ('RESULTADO PRUEBA: ' || v_resultado);
END;

Generacion de archivos XML

Para generar un archivo XML, hay que parametrizar los nodos, los atributos y los campos que van a tener
los nodos.

Inicializacion
Todo documento XML debe de tener un nodo raiz que engloba la totalidad del resto de los nodos, en el

proceso de inicializacion se llama a la funcion a PK._XML.XML INICIALIZA, esta funcion devuelve un
PLS INTEGER que identifica al nodo raiz y recibe por parametro la etiqueta del nodo Raiz. Ejemplo:

v_id nodo raiz :=pk xml.xml inicializa('Clientes");

127

@M EDISA

Incluir nodos al documento

Se pueden afadir tantos nodos como sea necesario, un nodo puede estar si es necesario a una tabla o puede
tomar valores fijos. Para crear un nodo se llamarad a la funcion PK XML.XML CREA NODO, esta
funcion devolvera un PLS INTEGER que identifica al nodo y que serd necesario para luego anadirle
campos. La funcion recibe los siguientes parametros:

e p_id nodo_padre: Obligatorio, se indica el nodo del que va a colgar. Todo nodo va a tener un
nodo padre, ya que como minimo hay un nodo raiz que engloba a todos.

e p_etiqueta_registro: Obligatorio. Etiqueta XML que va agrupar los campos de cada registro.

e p_etiqueta_grupacion: Opcional. Etiqueta que agrupa a todos los registros.

e p_tabla: Opcional. Nombre de la tabla que debe de recorrerse para obtener los registros a incluir
en el XML.

e p_where: Opcional. Condicion a aplicar a los registros de la tabla.

e p_order_by: Opcional. Ordenacién de los registros a obtener.

Nota sobre variables en p_where: en la where se pueden usar variables de tipo :xxxx, esas variables seran
enlazadas de forma dindmica. Para indicar los valores a esas variables hay que llamar al procedimiento
PK_XML.SET_VARIABLE('<variable>', <valor>);

Por ejemplo, si en la where se utiliza “codigo_empresa = :p_empresa” habra que enlazar “:p_empresa” con
el valor correspondiente con PK. XML.SET VARIABLE('P EMPRESA!', '013");

Incluir campos a un nodo

Para incluir campos a un nodo hay que llamar a la funcion PK_ XML.XML CREA CAMPO_NODO, esta
funcion devuelve un PLS INTEGER que identifica al campo y recibe los siguientes parametros:

e p_id_nodo: Obligatorio, se indica el nodo del que va a colgar el campo.

e p_etiqueta: Obligatorio, etiqueta que va a tener el valor del campo en el XML.

e p_campo_tabla: Opcional, si el nodo esta asociado a tabla, se indica de que campo debe de
obtenerse al valor a incluir en la etiqueta.

e p_valor_fijo: Opcional, valor que llevara la etiqueta, sin necesidad de ser recuperado de la tabla.

e p_obligatorio: Se utiliza exclusivamente cuando se indica “p_campo_tabla” y los valores que
recibe son ‘S’ y ‘N”. Si se pasa el valor ‘N’ y el campo indicado en p_campo_tabla es NULL ya
no se incluye la etiqueta en el XML. Si no se indica, el valor por defecto es ‘S’.

Incluir atributos a un nodo.

En XML los nodos pueden contener informacion en forma de atributos, para ello se incorpora la funcion
PK_XML.XML CREA_ATRIBUTO_NODO que devuelve un PLS INTEGER que identifica el atributo
y recibe los siguientes parametros:

e p_id_nodo: Obligatorio, se indica el nodo del que va a colgar el atributo.

e p_etiqueta: Obligatorio, etiqueta que va a tener el atributo dentro del nodo.

e p_campo_tabla: Opcional, si el nodo esta asociado a tabla, se indica de que campo debe de
obtenerse al valor a incluir en el atributo.

e p_valor_fijo: Opcional, valor que llevara el atributo, sin necesidad de ser recuperado de la tabla.

Ejecutar el proceso de generacion

Una vez parametrizada la estructura del XML se dispone de la funcion PK. XML.CALCULA SQL XML()
que devuelve el XMLTYPE con el contenido del XML.

En el paquete PK_XML hay funciones para gestionar el XMLTYPE, por ejemplo, se podria guardar en
archivo mediante PK_ XML.GRABA XML EN FICHERO.

128

@M EDISA

Ejemplo:

DECLARE
v_1id nodo_raiz PLS_INTEGER;
v_1id nodo_generico PLS_INTEGER;
v_1id nodo_clientes PLS_INTEGER;
v_id nodo_albaranes PLS_INTEGER;

v_1id_campo PLS_INTEGER;
v_id_atributo PLS_INTEGER;
v_xml XMLTYPE;
BEGIN
v_1id nodo_raiz := pk_xml.xml inicializa('Clientes');

v_1id nodo_generico := pk_xml.xml crea nodo(p_id nodo_padre => v_id nodo_raiz,
p_etiqueta_registro => 'DatosExportacion');
v_1id campo := pk xml.xml crea_ campo_nodo (p_id_nodo => v_id nodo_generico,
p_etiqueta => 'UsuarioExportacion',
p_valor fijo => 'ELIASF');

v_id campo := pk xml.xml_crea_ campo_nodo (p_id nodo => v_id nodo_generico,

p_etiqueta => 'Fecha',

p_campo_tabla => 'TO CHAR(SYSDATE, ''DD/MM/YYYY'')');
v_1id nodo_clientes := pk_xml.xml crea nodo(p_id_nodo_padre => v_id nodo_raiz,

p_etiqueta_registro => 'Cliente',
p_tabla => 'clientes c',

p_where => 'c.codigo_empresa = :p_empresa',
p_order by => 'c.codigo_rapido');
v_id atributo := pk xml.xml crea_atributo_nodo(p_id nodo => v_id nodo_clientes,

p_etiqueta => 'CodigoEnAtributo',
p_campo_tabla => 'c.codigo_rapido');
v_id campo := pk xml.xml_ crea campo_nodo (p_id nodo => v_id nodo_clientes,
p_etiqueta => 'Codigo’,
p_campo_tabla => 'c.codigo_rapido');
v_1id campo := pk xml.xml_crea_campo_nodo (p_id_nodo => v_id nodo_clientes,
p_etiqueta => 'Direccion’,
p_campo_tabla => 'c.direccion',
p_obligatorio => 'N');
v_id campo := pk xml.xml crea campo_nodo (p_id nodo => v_id nodo_clientes,
p_etiqueta => 'Nombre',
p_campo_tabla => 'c.nombre');
v_1id nodo_albaranes := pk xml.xml crea nodo(p_id nodo_padre => v_id nodo_clientes,
p_etiqueta_registro => 'Albaran',
p_etiqueta_agrupacion => 'Albaranes',
p_tabla => 'albaran_ventas av',
p_where => 'av.cliente = c.codigo_rapido AND av.empresa =
:p_empresa');
v_id campo := pk xml.xml_crea campo_nodo (p_id nodo => v_id nodo_albaranes,
p_etiqueta => 'Numero',
p_campo_tabla => 'av.numero_albaran') ;
v_1id _campo := pk_xml.xml_crea_campo_nodo (p_id_nodo => v_id nodo_albaranes,
p_etiqueta => 'Importe',
p_campo_tabla => 'ROUND (av.importe_bruto)');

pk_xml.set_variable('p_empresa', '013');

v_xml := pk xml.calcula_sqgl xml();

pk_xml.graba xml en fichero(v_xml, 'BLOB TEMP', 'prueba.xml',6 NULL);
END;

129

@M EDISA

Recursos HTML en programas de Forms.

Con el fin de extender las funcionalidades de Oracle Forms, se ha implementado a través de los objetos
BEAN de clases Java, cargar el navegador web y en el cargar recursos HTML que previamente se descargan
en el equipo local del usuario.

Programa Archivos de Recursos [U_RESOURCES]

Este programa sirve de repositorio de los recursos disponible, los cuales mediante la libreria “pklibrsc.pll”
se descargaran en el equipo local del usuario, controlando su versionado a partir del SHA1 de los mismos.

Cabe destacar que este programa no solo sirve para recursos HTML, sino cualquier tipo de archivo que se
quiera enviar al equipo local del usuario.

Otra caracteristica, es que el concepto de TIPO RECURSO el cual a través del prefijo “GLOBAL ”
permite registrar aquellos recursos que sean comunes a un tipo, realizando su descarga previa.

La nomenclatura de recursos HTML a seguir es la siguiente

NOMBRE <NOMBRE FMB> al que pertenece
L= Archivos de recursos l=b

Recursos ERP

08/03/2022 09:17:08 1
Tipo FORMS_HTM Descripcion Recursos HTML programas FORMS
Cadigo Descripdon Nombre Archivo SHA1
INFOR_CMF Visor avanzado resultado informe CMF infor_cmf.zip ASDC99A9DEEB30938C72A14C2F7891CE026A31A4 A
PR_TRAZA_MULTILOTE Trazabilidad Multilote pr_traza_multilote.zip 96C63D3BDBE20AEDO9F474ADF4476D67A5E3A381

-

Tipo Almacenamiento Binario comprimido ZIP [BLOB] hd

PKLIBRSC.PLL

Esta PLL tiene registrado el paquete “PKRESOURCES” que contiene métodos para la carga de los recursos
en el equipo local.

e FUNCTION habilitado RETURN BOOLEAN; Retorna si esta disponible su uso. Esto sera cierto
en un entorno 6.4.2 o superior.

e FUNCTION carga_recurso(p_tipo VARCHAR?2, p_codigo VARCHAR2) RETURN VARCHAR?2;
Cargar el recurso solicitado. Retorna la ruta donde fue descargado.

e FUNCTION carga archivo bd temp(p nombre archivo VARCHAR2) RETURN VARCHAR?2;
Cargar el fichero almacenado PK BLOB2BD.GET FICHERO en el directorio temporal de
recursos, retornando la ruta al mismo.

130

@M EDISA

FUNCTION carga_archivo_erp_temp(p_id_archivo NUMBER) RETURN VARCHAR?2; Cargar
desde ARCHIVOS_ERP el archivo identificado por ID ARCHIVO en el directorio temporal de
recursos, retornando la ruta al mismo.

PROCEDURE borra_archivo_temp(p_nombre_archivo VARCHAR2); Borra el archivo del
almacenamiento temporal resultado de una carga anterior.

PROCEDURE borra_archivo_erp_temp(p_id_archivo NUMBER); Borra el archivo del
almacenamiento temporal resultado de una carga anterior.

PROCEDURE limpia_archivos _temp; Eliminar todo el contenido del directorio de
almacenamiento temporal.

PROCEDURE limpia_directorio_temp(p_solo_antiguos BOOLEAN DEFAULT FALSE); En el
caso de enviar “p_solo_antiguos” a FALSE se comporta del mismo modo que el anterior método.
En el caso de enviar con valor TRUE, se borran solo aquellos que han sido cargados mediante
llamadas a “carga_archivo _erp temp”, los cuales registran en una variable global todos los
archivos generados.

PKLIBWEBBROWSER.PLL

Esta libreria se basa en el codigo de “PKLIBMENUADEF” el cual incluye un paquete PKWEBBROWSER
con una serie de métodos que permiten gestionar las pestafias con navegador integrado en el programa de
inicio (BPM, Widgets, Comunidades...)

Para esta libreria, se ha limpiado todo lo referente a las pestaiias, registrando un tinico BEAN Java en el
cual residira el navegador web y sobre el que propagar los eventos de sus métodos.

131

PROCEDURE inicio(p_ventana...); Método en el que se registra el BEAN indicando una serie de
propiedades respecto a su tamaiio, url de inicio...

PROCEDURE when _new_item_instance; Agregar este codigo al disparador estandar del ITEM
del BEAN.

PROCEDURE when_window_resized(p_ventana VARCHAR?2); Agregar este codigo al disparador
estandar para que el navegador sea responsive.

PROCEDURE when_window_activated(p _ventana VARCHAR2); Agregar este codigo al
disparador estandar para que el navegador sea responsive.

PROCEDURE ejecutar_javascript(p_javascript VARCHAR?2); Permite enviar un JavaScript al
navegador. Evento asincrono.

PROCEDURE cambiar_url(p_url VARCHAR?2), Permite cambiar la URL del navegador.
FUNCTION ejecutar _javascript(p_javascript VARCHAR2) RETURN VARCHARZ2; Permite
enviar un JavaScript al navegador del cual se espera respuesta para ser tratada. Es un evento
sincrono.

PROCEDURE ejecutar_javascript_gzip_bd; Permite enviar como JavaScript el contenido de
PK_BLOB2BD, ¢l cual se espera que esté¢ comprimido en GZIP. Método Asincrono.
FUNCTION ejecutar_javascript_gzip_bd RETURN VARCHAR2; Permite enviar como JavaScript
el contenido de PK_BLOB2BD, el cual se espera que esté comprimido en GZIP y recuperar su
respuesta. Método sincrono.

PROCEDURE ejecutar_javascript_bd; Permite enviar como JavaScript el contenido de
PK_BLOB2BBD el cual previamente comprimira como GZIP. Método asincrono.

FUNCTION ejecutar_javascript bd RETURN VARCHAR2; Permite enviar como JavaScript el
contenido de PK BLOB2BD el cual previamente comprimira como GZIP y recuperar su
respuesta. Método sincrono.

PROCEDURE cerrar_navegador; Cerrar el navegador, limpiando sus recursos. No es necesario
aunque si recomendable.

@M EDISA

Manual de uso en programa
Agregar las librerias “pklibrsc.pll” y “pklibwebbrowser.pll” al programa.

'f‘?-ﬂttached Libraries

(2 PKIAVAID
EPEJAVAUTL
&PKLIBFILE
PELIBPNT
&2PKLIBRSC
#:PKLIBWEBBROWSER

£Nata Black=

Crear parametro “recurso_inicializado” con valor por defecto a N

Esto nos permite evitar volver a cargar el recurso en el método donde se realice la carga del recurso, asociar
el BEAN al navegador y por ultimo ejecutar el JavaScript para mostrar los datos en el recurso HTML.

Registrar los siguientes disparadores

WHEN-WINDOW-RESIZED

| pkwebbrowser.when window_resized(:system.event window) ;

WHEN-WINDOW-ACTIVATED

| pkwebbrowser.when_window_activated(:system.event_ window) ;

BLOQUE-ITEM - WHEN-NEW-ITEM-INSTANCE

I pkwebbrowser.when new_item instance;

KEY-EXIT

IF NVL(:parameter.recurso_inicializado, 'N') = 'S' THEN
pkwebbrowser.cerrar_navegador;
pkresources.limpia_archivos_temp;

END IF;

DISPSTD.KEY EXIT;

Ejemplo de carga de recurso HTML y envio evento JavaScript.

--Cargar recurso HTML

IF NVL(:parameter.recurso_inicializado, 'N') = 'N' THEN

v_directorio_recurso := pkresources.carga_recurso(p_tipo => :parameter.resource_tipo, p_codigo =>
:parameter.resource_codigo) ;

pkwebbrowser.inicio(p_bean _area => 'B6.BEAN WWW', p url => v directorio_recurso || 'index.html"',
p_ajuste_horizontal bean => 0.05, p_ajuste vertical bean => 0.25);

:parameter.recurso_inicializado := 'S';
END IF;

--Lanzar generacién CLOB
f_generar_javascript_bd(p_empresa => :global.codigo_empresa) ;
pkwebbrowser.ejecutar_javascript_bd;

132

@ EDISA

Trazabilidad Multilote
Trazabilidad Multilote - Filtros Arboles de Trazabilidad Tabla de Trazabilidad Movimientos de Lote Trazado Stock/Ventas | Trazabilidad Modo Gréfico

i| TRAZABILIDAD
Modo arbol desde nivel 0 v 00389 - TOPGEL-15/69
Movimientos b
W Compra]
P sl 00389 - TOPGEL-15/69
Compra x C.T. 2]
: o ANILLA (3X2)C. TOPGEL 20%
[Consumo [8] 456JM
Lt ORIGENES 81
&6 Pesada Entrada] & DESTINOS 9]
&l Pesada Salida]

OFs
1/842 Pofon Pota Arg. Varios Clientes 7
1/954 Reetiqguetado Mercancia Sala A& [
Almacenes
Almacen Principal Ubicado 7
Planta Elaberacion [31
Proveedores
Casa Ramon S1L. (4]
Envases Plasticos Del Ter S.A. [11

Industrial Bolsera Granadina, S.A. [11

Salida gradfica del programa “Trazabilidad Multilote”

133

@M EDISA

Editor Visual HTML

El editor visual HTML se abre en una ventana flotante similar a la siguiente:

e e Editor HTML

Asunto Prueba Asunto |
Archivo Editar Ver Insertar Formato Herramientas Tabla Ayuda

RQo I %Doe—-—BKHO-
BEO BHAE BERBRE S T2

i
14
i
14
=
[+
JC
&
&L
®
1.
Be
jol
it}
B3]

Ejemplo de editor Visual HTML

« Valor 1

« Valor 2
t s Valor3
| Tabla:

A B c D

=

UL = LI 18 PALABRAS DESARROLLADO POR TINY

|]
Cancelar Aceptar

Para que un programa pueda hacer uso del editor HTML debe de incorporar la libreria: pkeditorhtml.pll

Inicializar

El primer paso que hay que ejecutar (y TUnicamente una vez) es procedimiento
PKEDITORHTML.INICIALIZAR();, de esta forma se indica que se desea utilizar el editor HTML.

Propiedades.

A continuacion, hay que indicar el comportamiento que se desea que tenga el editor, para ello se indican
propiedades mediante PREDITORHTML.SET PROPIEDAD('<codigo propiedad>', '<valor_propiedad');

Las propiedades disponibles son las siguientes:

e ACTIVA CAMPO_ASUNTO: Si se pasa el valor S en <valor_propiedad>, mostrara un campo
a mayores donde se le solicita al usuario un Asunto, si no se pasa ese campo estara oculto al
usuario. El texto del asunto puede ser recuperado de forma independiente del texto HTML una vez
el usuario cierra el editor.

e ACTIVA_CAMPO_PARA: Si se pasa el valor S en <valor propiedad>, mostrara un campo a
mayores donde se le solicita al usuario direcciones de correo electronico. Estas direcciones pueden
ser recuperadas de forma independiente del texto en HTML una vez el usuario cierra el editor.

e ACTIVA CAMPO_CC: Si se pasa el valor S en <valor_propiedad>, mostrara un campo a
mayores donde se le solicita al usuario direcciones de correo electronico “Con copia”. Estas
direcciones pueden ser recuperadas de forma independiente del texto en HTML una vez el usuario
cierra el editor.

e ACTIVA CAMPO_CCO: Si se pasa el valor S en <valor_propiedad>, mostrara un campo a
mayores donde se le solicita al usuario direcciones de correo electronico “Con copia oculta”. Estas
direcciones pueden ser recuperadas de forma independiente del texto en HTML una vez el usuario
cierra el editor.

e ETIQUETA_PARA: Permite personalizar en <valor propiedad> un texto diferente a la etiqueta
que va a tener el campo “Para”.

e ETIQUETA_CC: Permite personalizar en <valor propiedad> un texto diferente a la etiqueta que
va a tener el campo “Con copia”.

e ETIQUETA_CCO: Permite personalizar en <valor propiedad> un texto diferente a la etiqueta
que va a tener el campo “Con copia oculta”.

134

@M EDISA

e ETIQUETA_LISTA_ASUNTO: Permite personalizar en <valor propiedad> un texto diferente
a los textos fijos que puede seleccionar el usuario a incluir en el asunto. Ver apartado: Incluir
etiquetas fijas.

e ETIQUETA_LISTA_CUERPO: Permite personalizar en <valor propiedad> un texto diferente
a la etiqueta del campo de textos fijos que puede seleccionar el usuario a incluir en el cuerpo. Ver
apartado: Incluir etiquetas fijas.

e ETIQUETA_LISTA_IMAGEN: Permite personalizar en <valor propiedad> un texto diferente
a la etiqueta del campo de imagenes prefijadas que pueden ser incluidas en el cuerpo. Ver apartado:
Incluir iméagenes.

e VALOR_INICIAL_PARA: Contenido que va tener el campo “Para” cuando se inicie el editor.
Lleva implicito un ACTIVA_ CAMPO_PARA.

e VALOR_INICIAL_CC: Contenido que va tener el campo “Con copia” cuando se inicie el editor.
Lleva implicito un ACTIVA_CAMPO_CC.

e VALOR_INICIAL_CCO: Contenido que va tener el campo “Con copia oculta” cuando se inicie
el editor. Lleva implicito un ACTIVA_ CAMPO_CCO.

e TEXTO_INICIAL_ASUNTO: Texto que va a contener el campo Asunto de forma inicial, si se
indica, automaticamente se activa el campo asunto, sin necesidad de indicar la propiedad
ACTIVA_CAMPO ASUNTO.

e TEXTO_INICIAL_CUERPO: Texto HTML que va mostrarse en el editor HTML al iniciarse.

e PIXELS ANCHO: Permite indicar el ancho inicial de la ventana del editor, por defecto es 1024.

e PIXELS_ALTO: Permite indicar el alto inicial de la ventana del editor, por defecto es 768.

Incluir etiquetas fijas

Se permite afiadir campos de tipo LIST-ITEM en donde se muestren constantes que el usuario podra
incorporar al los campos “Asunto” y “Cuerpo”, estos campos pueden ser valores para ayudar al usuario a
configurar el Parser, es decir, que el usuario seleccione “Nombre Cliente” y se incorpore el texto
{clientes.nombre} en el punto en donde se encuentra el cursor .

Para incluir etiquetas hay que llamar al procedimiento PKREDITORHTML.ADD_ ETIQUETA('<Texto de
la etiqueta>', '<valor de la etiqueta>'); por cada etiqueta que se quiera incluir. Ejemplo:

PKEDITORHTML.ADD_ETIQUETA('Nombre Cliente', '{clientes.nombre}');

Incluir imdgenes

Se pueden incluir imagenes en el cuerpo del mensaje, pero estas imagenes tienen que estar prefijadas en el
mantenimiento de parametros generales de ment (U_MPRMEN), en la pestafia “Imagenes Publicas”.

En esa pantalla se introduce una descripcion para la imagen, la URL de la imagen publica en Internet y
opcional el ancho y alto en pixels al que debe de ajustarse la imagen.

Si se utiliza Forms 12¢ y esta configurado un directorio publico de imagenes, se pueden subir imagenes al
servidor de aplicaciones mediante un plug-in en la botonera vertical.

Ejecutar y recuperar los datos introducidos por el usuario.

Para visualizar el editor hay que ejecutar el procedimiento PKEDITORHTML.MOSTRAR().

Una vez se cierra se pueden recuperar los datos del editor mediante la funcioén
PKEDITORHTML.GET PROPIEDAD('<c6digo propiedad>);. Las propiedades disponibles son las
siguientes:

e ASUNTO: Texto del campo Asunto.

e CUERPO: Texto en HTML del cuerpo.

e PARA: Valor del campo “Para”.

e CC: Valor del campo “Con copia”.

e CCO: Valor del campo “Con copia oculta”.

135

@M EDISA

Gestion de Archivos

Para gestionar archivos en una tabla inicamente es necesario que la tabla tenga los siguientes campos:

e NOMBRE_ARCHIVO de tipo VARCHAR2(500): El nombre del campo puede variar, no tiene
que ser necesariamente NOMBRE ARCHIVO, pero lo recomendable seria utilizar ese nombre.
Este campo sera el que sera visible por el usuario y le hay que asignar la clase CLASE_ ARCHIVO
0 CLASE_ARCHIVO_GRID dependiendo si el campo estd o no en un multiregistro.

e ID_ARCHIVO de tipo NUMBER: Este campo no sera visible al usuario, por lo que no tendré
especificado lienzo. En este campo se va almacenar el puntero al archivo que realmente
almacenado en la tabla ARCHIVOS_ERP.

La subida y descarga de archivos los gestiona el entorno, lo tinico que hay que gestionar dentro del fuente
es el borrado del registro. Al borrar un registro que tenga un campo con valor en ID_ ARCHIVO hay que
ejecutar el procedimiento pk blob2bd.borra archivo(<empresa>, <id archivo>, <tabla>) en el disparador
PRE-DELETE del bloque.

Este procedimiento recibe 3 parametros:

e <p_empresa>. Codigo de la empresa, normalmente se pasara :global.codigo _empresa
e <p_id_archivo>. Valor del campo ID ARCHIVO del bloque.

e <p_tabla>. Nombre de la tabla que tiene el nombre del archivo.

e <p_usuario>. Cédigo del usuario, normalmente se pasara :global.usuario.

Ejemplo:

IF :b2.id_archivo IS NOT NULL THEN
pk_blob2bd.borra_archivo (p_empresa => :global.codigo_empresa,
p_id_archivo => :b2.id_archivo,
p_tabla => 'CRMEXPEDIENTES_ LIN_NOTAS',
p_usuario => :global.usuario);
END IF;

Borrar un archivo en la base de datos

El archivo debe de encontrarse en un directorio definido en ORACLE mediante CREATE DIRECTORY
<NOMBRE_DIRECTORIO> AS '<ruta>';

Por ejemplo, CREATE DIRECTORY BLOB_TEMP AS '/u01/bte';

El directorio es necesario que tenga permisos de Oracle y de Java, para ello se le asignaran de la siguiente
forma:

GRANT READ, WRITE ON DIRECTORY BLOB_TEMP TO <USUARIO_LIBRA>;

exec dbms_java.grant permission ('<USUARIO LIBRA>','java.io.FilePermission','/u0l/bt/*"',
'read,write, execute,delete");

Por ejemplo:

GRANT READ, WRITE ON DIRECTORY BLOBiTEMP TO LIBRA;
exec dbms_java.grant_permission('LIBRA','java.io.FilePermission', '/uOl/bt/*', 'read,write,execute,delete');

Si se han concedido correctamente los permisos para borrar un archivo simplemente hay que ejecutar la
funcion:

PKiBLOB2BD.BORRARiARCHlvoiENiDIRECTORIO('<DIRECTORIO>', '<NOMBRE_ARCHIVO') ;
Esta funcion devolvera OK si ha podido borrar el archivo y ERROR en caso contrario.

e <DIRECTORIO>: Cédigo del directorio creado con CREATE DIRECTORY.
e <NOMBRE ARCHIVO>: Nombre del archivo que se encuentra en la ruta a la que apunta el
directorio <DIRECTORIO>

136

@M EDISA

Obtener el listado de archivos de un directorio de la BD.

Mediante la funciéon PK BLOB2BD.GET LISTA ARCHIVOS('<directorio>"); devolvera una tabla de
tipo PKPANTALLAS.VARCHAR2 TABLE con la lista de archivos que contiene el directorio. Ejemplo:

DECLARE
t_archivos PKPANTALLAS.VARCHAR2_ TABLE;
BEGIN
t_archivos := PK_BLOB2BD.GET_LISTA ARCHIVOS ('BLOB_TEMP');

FOR i IN 1..NVL(t_archivos.LAST, 0) LOOP
PKPANTALLAS.LOG ('ARCHIVO: ' || t_archivos(i));
END LOOP;
END;

Comprimir un archivo en la base de datos

El archivo debe de encontrarse en una carpeta con permisos (Ver apartado: Borrar un archivo en la base de
datos, ya que los permisos son exactamente los mismos)

Para comprimir un archivo se ejecutara la funcion:

PK_BLOB2BD.COMPRIMIR ARCHIVO ('<DIRECTORIO>', '<ARCHIVO>', <P_BORRAR ORIGINAL>) ;

Esta funcion devolvera OK si ha podido comprimir el archivo y ERROR en caso contrario. El archivo
comprimido tendrd el mismo nombre, pero se le aflade la extension “.zip”, por ejemplo, si se comprime
“prueba.pdf” el archivo resultante sera “prueba.pdf.zip”.

e <DIRECTORIO>: Cédigo del directorio creado con CREATE DIRECTORY.

e <ARCHIVO>: Nombre del archivo a comprimir y que se encuentra en la ruta a la que apunta el
directorio <DIRECTORIO>

e <P BORRAR ORIGINAL>: Si se pasa TRUE y la compresion es correcta el archivo original se
borra, en caso de pasar FALSE se mantiene.

Comprimir varios archivos en un unico ZIP en base de datos

Todos los archivos deben de encontrarse en una carpeta con permisos (ver apartado: Borrar un archivo en
la base de datos, ya que los permisos son exactamente los mismos).

En primer lugar, hay que indicar el directorio en donde se va a realizar la operacion compresion, llamando
al: pk_blob2bd.inicializar compresion('<directorio>");

Ejemplo:

pk_blob2bd.inicializar_compresion ('BLOB_TEMP');

Por cada archivo que se desea meter en el ZIP hay que llamar al procedimiento
pk_blob2bd.agregar _archivo_compresion:

pk_blob2bd.agregar_archivo_compresion (<nombre_archivo>, <nombre archivo_en_zip>);

e <nombre_archivo>: Nombre del archivo que se encuentra en el directorio indicado en
“pk_blob2bd.inicializar compresion”.

e <nombre_archivo_en_zip>: Ruta y nombre que se le dara al archivo dentro del ZIP. En el caso
de pasar NULL o no indicar este parametro el archivo se metera en el raiz del ZIP y con el mismo
nombre que el indicado en el parametro <nombre archivo>.

Para ejecutar el proceso de compresion se llamara al procedimiento:

pk_blob2bd.comprimir (<nombre_archivo_destino>, <borrar_originales>);

e <borrar_originales>: Valores posibles:
o S: En el caso de que el proceso de compresion sea realizado satisfactoriamente, los
archivos originales seran borrados.
o F: Se borran los archivos independientemente del resultado de la compresion.
o N: Los archivos no seran borrados, aunque el resultado del proceso sea correcto.

137

@M EDISA

e <nombre_archivo_destino>: Nombre del archivo que se generard. Al nombre indicado se le
afiadira la extension .ZIP de forma automatica.

Descomprimir un archivo en la base de datos

e El archivo debe de encontrarse en una carpeta con permisos (ver apartado: Borrar un archivo en
la base de datos, ya que los permisos son exactamente los mismos).

e Si se descomprime un archivo con directorios, el nombre del archivo serd la concatenacion del
directorio (cambiando las barras de separacion de directorio por guiones bajos) y el nombre del
archivo.

Para descomprimir un archivo se ejecutara la funcion:

PK_BLOB2BD.DESCOMPRIMIR ARCHIVO ('<DIRECTORIO>', '<ARCHIVO>', <P_BORRAR_ORIGINAL>) ;

Esta funcion devolvera OK si ha podido descomprimir el archivo y ERROR en caso contrario. El archivo
comprimido puede tener varios archivos en su interior, llamando a
PK BLOB2BD.GET LISTA ARCHIVOS(); devolvera una lista de tipo
PKPANTALLAS.VARCHAR2 TABLE con los archivos que contenia el zip.

e <DIRECTORIO>: Cédigo del directorio creado con CREATE DIRECTORY.

e <ARCHIVO>: Nombre del archivo a descomprimir y que se encuentra en la ruta a la que apunta
el directorio <DIRECTORIO>

e <P BORRAR ORIGINAL>: Si se pasa TRUE y la descompresion es correcta el archivo
comprimido original se borra, en caso de pasar FALSE se mantiene.

Ejemplo:
DECLARE
t_archivos pkpantallas.varchar2_table;
t_archivos_zip pkpantallas.varchar2_table;
v_directorio VARCHAR2 (100) := 'BLOB_TEMP';
BEGIN
t_archivos := pk _blob2bd.get lista archivos(v_directorio);

FOR i IN 1..t_archivos.COUNT LOOP
IF UPPER(SUBSTR(t_ archivos(i), -4)) = '.ZIP' THEN
--Descomprimimos el .ZIP y lo borramos
IF pk _blob2bd.descomprimir_ archivo(v_directorio, t_archivos(i), TRUE) = 'OK' THEN
t_archivos_zip := pk _blob2bd.get_ lista_archivos();

FOR z IN 1..t archivos_zip.COUNT LOOP

pkpantallas.log ('ARCHIVO: ' || t_archivos(i) || ' -> ' || t_archivos_zip(z));
END LOOP;
END IF;
ELSE
pkpantallas.log ('ARCHIVO: ' || t_archivos(i));
END IF;
END LOOP;

END;

Impresion de archivos PDF

Para lanzar la impresion de un archivo PDF hay que afadir la libreria PKLIBFILE al programa.

El archivo a imprimir puede encontrarse en un directorio fisico del ordenador del usuario o en una direccion
WEB.

Para realizar la impresion se ejecutara el procedimiento, STDFILE.IMPRIME DOCUMENTO, este
procedimiento recibe los siguientes parametros:

e p_archivo_o_url: Ruta al archivo PDF a imprimir o a la URL donde se encuentra el documento.

e p_tipo: Sienp archivo o url se indico una ruta a un archivo local se debera de pasar 'PDF/, si se
indicé una URL, hay que pasar 'URL PDF".

e p _impresora: Nombre de la impresora del sistema operativo por la que se quiere realizar la
impresion.

138

@M EDISA

Para imprimir un archivo almacenado en ARCHIVOS ERP simplemente hay que usar la funcién
STDFILE.IMPRIME DOCUMENTO_ARCHIVOS ERP(<empresa>, <id_archivo>, <tabla>,
<impresion_por windows>, <impresora>):

e <empresa>: Codigo de la empresa en la que esta validado el usuario.

e <id archivo>: Identificador del archivo de ARCHIVOS_ERP a imprimir.

e <tabla>: Tabla a la que esté asociado el archivo.

e <impresion por windows>: Si se pasa TRUE, quiere decir que lo que se va a indicar en
<impresora> es la cola del ordenador del usuario en la que se debe de realizar la impresion, si se
pasa FALSE en <impresora> hay que pasar el codigo de una impresora logica de Libra.

e <impresora>: Codigo de la impresora logica de Libra o de la cola de impresion del ordenador
donde se va a realizar la impresion, depende del parametro <impresion_por_ windows>.

Cambiar codificacion de archivos de texto

Hay casos en donde es necesario generar archivos con codificacion ANSI o UTF-8. En la libreria
PKLIBFILE existe la funcion para realizar la conversion de archivos usando la funcion:

STDFILE.CONVIERTE CODIFICACION (p_codificacion_origen, p_codificacion_destino, p_nombre_archivo).

e p_codificacion_origen: Hay que indicar la codificacion en la que se encuentra el archivo, valores
posibles (si se pasa a NULL se intentara detectar de forma automatica la codificacion del archivo):
o IS0-8859-1
o UTF-8
o UTF-8+BOM
e p_codificacion_destino: Codigo de la codificacion a la que se quiere llevar el archivo, las
codificaciones son iguales que las de origen (si se pasa a NULL se asumira la codificacion de la
variable NLS LANG del servidor de Forms.
e p_nombre_archivo: Ruta completa al archivo que se quiere convertir de codificacion.

La funciéon devuelve OK si la conversion se ha realizado correctamente, si se ha producido un error
devolvera el motivo de este.

Consultar la codificacion de un archivo de texto

Se dispone de la funcion STDFILE.GET TIPO_ CODIFICACION(archivo) que devolvera UTF8 o
WESISO8859P1 seglin esté codificado el archivo, (En Forms 12¢ el archivo tiene que estar en el servidor
de aplicaciones).

Obtener lista de archivos de un directorio
En base de datos

Para obtener el listado de archivos que se encuentran en un directorio de la base de datos se utiliza la funcion
PKBLOB2BD.GET LISTA ARCHIVOS(<p directorio>). Esta funciéon devuelve un array de
VARCHAR?2 de tipo PKPANTALLAS.VARCHAR2 TABLE.

e <p_directorio>: Codigo del directorio creado con CREATE DIRECTORY

Ejemplo:

DECLARE
t_archivos pkpantallas.varchar2 table;
BEGIN
t_archivos := pkblob2bd.get lista_ archivos(p_directorio => ‘BLOB_TEMP’);

FOR z IN 1..t_archivos_zip.COUNT LOOP
pkpantallas.log('ARCHIVO: ' || t_archivos(i) || ' -> ' || t_archivos_zip(z));
END LOOP;
END;

139

@M EDISA

En equipo del usuario o en el servidor de aplicaciones

El programa ha de tener incorporada la libreria pklibfile.pll. Para obtener el listado de archivos que se
encuentran un directorio del equipo del usuario o del servidor de aplicaciones se utiliza la funcion:
STDFILE.F LISTA ARCHIVOS DIRECTORIO(<p directorio>, <p_en ias>, <p_desde fecha>,
<p_hasta fecha>, <p patron nombre archivo>). Esta funcién devuelve un array de VARCHAR?2 de tipo
PKPANTALLAS.VARCHAR2 TABLE.

e <p_directorio>: Directorio en donde se encuentran los archivos.

e <p_en_ias>: Si se pasa TRUE <p directorio> hara referencia a una carpeta en el servidor de
aplicaciones, si se pasa FALSE hara referencia a una carpeta en el equipo del usuario.

e <p_desde_fecha>: Filtro desde fecha de ultima modificacion.

e <p_hasta_fecha>: Filtro hasta fecha de illtima modificacion.

e <p_patron_nombre_archivoe>: Filtro a aplicar sobre el nombre de archivos.

Ejemplo:
DECLARE
t_archivos pkpantallas.varchar2_ table;
BEGIN
t_archivos := stdfile.f lista archivos_directorio(p_directorio => '/Users/usuario/Temp',

p_en_ias => FALSE,
p_desde_fecha => NULL,
p_hasta_fecha => TRUNC (SYSDATE -1),
p_patron_nombre_archivo => '*.png');

FOR i IN 1..t_archivos.count LOOP

pkpantallas.log(t_archivos(i));
END LOOP;
END;

Gestion de fecha de ultima modificacion de un archivo
Obtener fecha de un archivo en base de datos

Para obtener la fecha de ultima modificacion de un archivo que se encuentra en la base de datos se utilizara
la funcion PK_BLOB2BD.FECHA MODIFICACION ARCHIVO(<p_directorio>, <p_archivo>).

e p_directorio: Cédigo del directorio creado con CREATE DIRECTORY
e p_archivo: Nombre del archivo del que se quiere obtener la fecha de tltima modificacion.

Ejemplo:

DECLARE
vifecha DATE;
BEGIN
v_fecha i= pk_blob2bd.fecha modificacion_archivo(p_directorio => ‘BLOB_TEMP' , p_archivo =>
‘nombre_archivo.xml’) ;
pkpantallas.log(‘archivo con fecha:
END;

‘|| TO_CHAR(v_fecha, ‘DD/MM/YYYY’));

Obtener fecha de un archivo en servidor de aplicaciones o en el equipo del usuario

Para obtener la fecha de un archivo que se encuentra en el servidor de aplicaciones o en el equipo del
usuario se utilizara la funcion stdfile. fecha ult modificacion(<p_archivo>, <p_en_ias>) que se encuentra
en la libreria pklibfile.pll.

e p_archivo: Ruta completa al archivo del que se quiere obtener la fecha de ultima modificacion.
e p_en_ias: Si se pasa TRUE <p_ archivo> hard referencia a un archivo en el servidor de
aplicaciones, si se pasa FALSE hara referencia a un archivo en el equipo del usuario.

Ejemplo:

DECLARE
v_fecha DATE;

BEGIN
v_fecha := stdfile.fecha ult modificacion(p directorio => ‘c:\temp\archivo.xml’, p en ias => FALSE);
pkpantallas.log(‘archivo con fecha: ‘ || TO_CHAR(v_fecha, ‘DD/MM/YYYY’));

END;

140

@M EDISA

Cambiar la fecha de ultima modificacion de un archivo en servidor de aplicaciones o equipo del
usuario.

Para cambiar la fecha de tltima modificacion de un archivo que se encuentra en el servidor de aplicaciones
o en el equipo del usuario se utilizard el procedimiento stdfile.set fecha ult modificacion(<p_archivo>,
<p_fecha>, <p_en_ias>) que se encuentra en la libreria pklibfile.pll.

e p_ archivo: Ruta completa al archivo del que se quiere cambiar la fecha de ltima modificacion.
e p_fecha: Fecha a asignar como fecha de tltima modificacion del archivo indicado en p_archivo.
e p_en_ias: Si se pasa TRUE <p archivo> hara referencia a un archivo en el servidor de
aplicaciones, si se pasa FALSE hara referencia a un archivo en el equipo del usuario.
Ejemplo:
BEGIN
stdfile.set_fecha ult _modificacion(p_archivo => ‘c:\temp\archivo.xml’, p fecha => SYSDATE, p_en_ ias =>

FALSE) ;
END;

Parser de textos para reemplazar etiquetas

Se dispone del paquete PKBDPARSER que generar un texto partiendo de una plantilla que contiene
etiquetas, esas etiquetas seran reemplazadas por los valores de campos de tablas de la base de datos

Por ejemplo, partiendo de esta plantilla:
Estimado Sr. {clientes.

} le informamos que dispone de la factura
{facturas_ventas.numero_serie}/{facturas_ventas.numero_factura} de fecha
{facturas_ventas.fecha_factura} disponible para descarga.

Una vez aplicado el paquete PKBDPARSER sobre la plantilla de ejemplo se obtendra algo similar a esto:

ARIDOS LOPEZ E HIJOS le informamos que dispone de la factura FV/3433 de fecha 08/06/2011
disponible para descarga.

Para realizar el proceso del ejemplo hay que indicar qué factura es la que tiene usar para reemplazar el
texto. El ejemplo para ejecutar el parseador para obtener el resultado del ejemplo seria el siguiente:

DECLARE

v_resultado VARCHAR?Z2 (30) ;

v_cadena_parseada CLOB;
BEGIN

pkbdparser.inicializar();

pkbdparser.set_variable ('numero_factura', 3433);

pkbdparser.set_variable('numero_serie', 'FV');

pkbdparser.set_variable('ejercicio', '2011');

pkbdparser.set_variable('empresa', '013'");

pkbdparser.set_propiedad_tabla ('FACTURAS_VENTAS', 'WHERE_DEFECTO', 'numero_factura = {numero_factura} AND
numero_serie = {numero_serie} AND ejercicio = {ejercicio} AND empresa = {empresa}');

pkbdparser.set propiedad tabla('CLIENTES', 'WHERE DEFECTO', 'codigo rapido = {facturas ventas.cliente} AND
codigo_empresa = {empresal}');

pkbdparser.set propiedad('PLANTILLA', 'Estimado Sr. {clientes.nombre} le informamos que dispone de la factura

{facturas_ventas.numero_serie}/{facturas_ventas.numero factura} de fecha {facturas_ventas.fecha factura}
disponible para descarga.');

v_resultado := pkbdparser.parsear_plantilla();
v_cadena_parseada := pkbdparser.get_resultado_parseado();
END;

141

@M EDISA

Tipos de etiquetas

Se contemplan los siguientes tipos de etiquetas

142

Variable: Valor indicado previamente en una variable, tendra el formato {variable}. Ejemplo:
{numero_factura}

Valor de tabla: Indica que debe sustituirse esa etiqueta por el valor del campo de una determinada
tabla. Esta etiqueta tendrd& el siguiente formato: {tabla.campo}. Ejemplo:
{facturas_ventas.cliente}. En caso de estar en una zona de repeticion, es decir, entre etiquetas de
inicio de repeticion y de fin de repeticion se usara {alias.campo} en vez de {tabla.campo}

Se pueden usar modificadores para alterar el resultado, en el caso de usar modificadores el formato
sera {alias.campo:modificador!|valor
modificador1|modificador2|valor modificador2|../modificador n| valor modificador n}, por
ejemplo: {crmexpedientes cab.fecha alta|FM|DD/MM/HH24:MI:SS}. Modificadores posibles:

o FM: Maéscara de formato.

o TYPE: Tipo de campo, Valores posibles:

= HTML, Se le aplica al resultado la funcion pk_xml.codifica_texto to html, para
reemplazar los caracteres especiales del HTML por la codificacion correcta.
También se reemplazan los retornos de carro por

= ESHTML: Se supone que se el resultado ya viene codificado en HTML y por
tanto no se le debe de alterar.
De repeticién, se dividen en otras dos etiquetas:

o Inicio de repeticion: Tiene el siguiente formato. {R:tabla:alias:condicion:orden:R},
dentro de condicion se podran usar etiquetas de valor de tabla o de variable (las del punto
anterior). Ejemplo: {R:albaran ventas lin:AVL:articulo = {articulos.codigo_articulo}
AND empresa = {empresa}:numero albaran DESC:R}. En caso de no indicar una
condicion o una ordenacibn se dejard en blanco, es decir:
{R:albaran_ventas_lin:AVL:::R}, en ese caso se usara la condiciéon y la ordenacion que
tenga asignada la tabla por defecto.

o Fin de repeticion: Indica que todo lo que se encuentra entre “Inicio de repeticion” y “Fin
de repeticion” se procesara tantas veces como filas devuelva la consulta sobre la tabla
indicada en la etiqueta de inicio. Tendra el siguiente formato: {E:alias:E}, ejemplo:

{E:AVL:E}
Generador de informes: Ejecuta un generador de informes y el resultado del informe lo incluye
en el texto. El formato de la etiqueta es:

{GIL:<informe>:<idioma>:<empresa>:<usuario>:<plantilla de valores de filtro>:<tipo>:<codigo
de configuracion>}.
o <informe>: Cédigo del informe del generador de informes a ejecutar.
o <idioma>: Idioma en el que se generaran las etiquetas de los campos.
o <empresa>: Codigo de la empresa sobre la que se ejecutara el informe.
o <usuario>: Usuario de Libra con el que se ejecutara el informe, el usuario determinara
los permisos de ejecucion.
<plantilla de valores de filtro>: Valores de filtro a aplicar al informe.
o <tipo>: Si se indica HTML se incluiran al resultado etiquetas para maquetar el resultado
en formato HTML. Si lo que se esta formateando es un campo de tipo HTML lo detectara
y no es necesario incluirlo. Si no se esta formateando un campo de tipo HTML y no se
indica nada en este campo el resultado sera formateado en texto plano.
o <codigo de configuracion>: Si el informe tiene varias configuraciones de columnas, se
puede indicar la que se debe de utilizar.

e}

Ejemplo: {GI:DIARIOS:01:013:EDISA:245:HTML:45} (Ejecuta el informe DIARIOS, con las
etiquetas en idioma 01, sobre la empresa 013, con los permisos del usuario EDISA, aplicando la

@M EDISA

plantilla de valores por defecto 245, el resultado se genera con etiquetas HTML vy utilizando la
configuracion de columnas con codigo 45.

e Funcién de base de datos: Ejecuta la funcion de base de datos indicada que devuelva un resultado
en VARCHAR?2 o en CLOB, con el formato {SF:<funcion a ejecutar>:EF}. A la funcion se le
pueden pasar los parametros que sean necesarios obtenidos de variables, con {variable} o de un
campo con {tabla.campo}. Ejemplo: {SF:PRUEBA FUNCION(p numero seriec =>
{facturas_ventas.numero serie}, p numero_factura => {facturas ventas.numero_factura}):EF}

e Imagen: En pardmetros generales de ment, en la pestaila “Imagenes Publicas” se pueden
configurar enlaces a URLs que apunten a imagenes. Con el parseador se puede generar la etiqueta
HTML que haga referencia a esa imagen con: {IMGHTML:CODIGO}, por ejemplo:
{IMGHTML:GE5S5MOLWO084CE8YLNPQFTI4DV5TNS8F4}

e Modificacion de propiedades, se dividen en:

o Variables: Permite modificar en un momento dado una variable, tiene el siguiente
formato: {SVA:<cédigo de la variable>:<valor de la variable>:SVA}, Ejemplo:
{SVA:codigo consgen:CONSGEN:SVA}

o Propiedades generales: Permite cambiar en un momento dado propiedades generales
del parseador, tiene el siguiente formato: {SPG:<co6digo de la propiedad>:<valor de la
propiedad>:SPG}, Ejemplo: {SP:MASCARA FECHAS:YYYY/MM/DD:SP}

o Propiedades de tablas: Permite cambiar en un momento dado propiedades generales de
una tabla, tiene el siguiente formato: {SPT:<cddigo de tabla / alias>:<codigo de la
propiedad>:<valor de la propiedad>:SPT}, Ejemplo:
{SPT:PROGRAMAS ERP:WHERE DEFECTO:codigo={codigo consgen}:SPT}

o Aifiadir columnas calculadas: Permite afiadir columnas calculadas a una tabla y ser
usadas dentro del parseador como si fuese una columna mas de la tabla, tiene el siguiente
formato: {ACT:<nombre de tabla / alias>:<nombre de columna>:<sentencia SQL para
obtener el resultado:ACT}. Ejemplo:
{ACT:CRMEXPEDIENTES CAB:NUMERO _ LINEAS:(SELECT COUNT(*) FROM
crmexpedientes_lin 1 WHERE L.numero_expediente =
crmexpedientes cab.numero_expediente AND l.empresa =
crmexpedientes_cab.empresa):ACT}

Inicializar

Es obligatorio en primer lugar ejecutar la instrucciéon pkbdparser.inicializar();. Esta instruccion inicializa
estructuras internas del paquete para realizar el proceso.

Propiedades generales del proceso

Para establecer las propiedades generales del proceso se usarda el procedimiento
pkbdparser.set_propiedad('<codigo_propiedad>', '<valor>");

Las propiedades que se pueden establecer son las siguientes:

e MASCARA_FECHAS: Mascara a aplicar a los campos de tipo fecha, en el caso de no especificar
esta propiedad se usara DD/MM/YYYY

e MASCARA_NUMEROS: Miscara a aplicar a los campos de tipo numérico, en el caso de no
especificar esta propiedad se realizara un TO_CHAR sin indicar ninguna mascara.

e PLANTILLA: Texto que contiene la plantilla a usar.

e TRAZA: Si se pasa el valor 'S' se guardard en LIBRA_LOG una traza interna para depurar del
proceso.

143

@M EDISA

Variables

Las variables son valores que no se obtienen de ninguna tabla, por lo que hay que suministrarselos al
proceso, luego serdn usadas en las etiquetas de tipo Variable.

Para declarar una variable hay que llamar al procedimiento pkbdparser.set_variable('<codigo de la
variable>', <valor>);. Por ejemplo: pkbdparser.set_variable('numero_factura', 3433);

Propiedades de tabla

Para ejecutar el proceso hay que limitar los registros de las tablas que se usan y en el caso de bloques de
repeticion el orden en el que se procesaran, para ello se dispone del procedimiento
pkbdparser.set_propiedad_tabla('<alias>', '<propiedad>', '<valor>");. Por ejemplo:
pkbdparser.set_propiedad_tabla('CLIENTES', 'WHERE_DEFECTO', 'codigo_rapido =
{facturas_ventas.cliente} AND codigo_empresa = {empresa}');

e <alias>: Si es una tabla que se usa en un grupo repetitivo se indicara el alias del grupo repetitivo
en vez del nombre de la tabla.
e <propiedad>: Existen las siguientes propiedades:

o WHERE_DEFECTO: Condicion que se aplicara al hacer la consulta de la tabla. Se
pueden usar etiquetas de tipo variable o de valor de tabla. Si en <alias> se indico el alias
de un grupo repetitivo y en este grupo repetitivo se indicoé una condicion, esa condicion
prevalecera sobre el valor pasado en esta propiedad.

o ORDER_BY_DEFECTO: Condicion de ordenacion que se aplicara al consultar la tabla.
Al igual que en WHERE DEFECTO, si en el repetitivo se indica una condicion de
ordenacion, esa condicion de ordenacion prevalecera sobre la que se pasa en esta
propiedad.

Propiedades de columna

Permite afiadir columnas calculadas a una tabla y ser usadas dentro del parseador como si fuese una columna
mas de la tabla.

Para afiadir una columna calculada hay que llamar al procedimiento
pkbdparser.add_columna_tabla('<alias>', '<nombre de columna>', '<sentencia SQL para obtener el
resultado>");

Ejemplo: pkbdparser.add_columna_tabla'CRMEXPEDIENTES CAB', NUMERO LINEAS', '(SELECT
COUNT(*) FROM crmexpedientes_lin 1 WHERE L.numero_expediente =
crmexpedientes_cab.numero_expediente AND lL.empresa = crmexpedientes_cab.empresa)’);

e <alias>: Si es una tabla que se usa en un grupo repetitivo se indicara el alias del grupo repetitivo
en vez del nombre de la tabla.

e <nombre de columna>: Nombre de la columna, que serd luego usada en el texto como
alias.columna.

e <sentencia SQL para obtener el resultado>: Sentencia SQL que se debe de afiadir a la SELECT
para obtener el resultado de la columna. Se puede indicar que la sentencia se obtenga de la
configuracion de campos de tablas del generador de informes, para ello en este parametro hay que
indicar Gl:<tabla>.<campo>, de esta forma se buscara la parametrizacion del campo en la
configuracion de tablas del generador de informes. Ejemplo: G:CRMEMPRESAS.D PAIS

Obtener el resultado

Para obtener el resultado en primer lugar hay que llamar a la funcion pkbdparser.parsear_plantilla();.
Esté funcion devolvera OK en caso de tener éxito y ERROR en caso de producirse algun fallo. Si se produce
un fallo en LIBRA LOG quedaré el motivo del error.

Una vez se ejecutd el parser, si el resultado que se espera puede ser almacenado en un VARCHAR?2, se
llamar4 a la funcion: pkbdparser.get_propiedad('RESULTADO_PARSEADO"); Para obtenerlo en una
variable CLOB se llamara a la funcién: pkbdparser.get resultado_parseado();

144

@M EDISA

Variables y parametros globales

Variables globales

Las variables globales que estan definidas en todos los programas de libra son:

En

IDIOMA_USUARIOQO: Codigo del idioma que tiene el usuario en su ficha. No es el idioma del
mantenimiento de Idiomas, es el idioma para el que se buscan las traducciones de las etiquetas de
los programas. Si en la ficha del usuario no tiene definido contendra el valor ‘01°.
IDIOMA_EMPRESA: De momento no tiene uso, siempre tiene le valor O1.
CODIGO_EMPRESA: Cédigo de la empresa que estd validada.

NOMBRE_EMPRESA: Nombre de la empresa que esta validada.

FECHA_CONEXION: Fecha y hora en formato CHAR con formato DD/MM/YYYY
HH24:MI:SS en la que entr6 el usuario en Libra.

MENUS_PERFILES: Coédigo de menu del ultimo programa en que entrd el usuario. Es muy
importante recalcar que es el Gltimo programa en que entr6 el usuario, ya que si el usuario entra
en el programa A y por ventanas entra también en el programa B y vuelve al programa A el valor
de esta variable contendra el codigo del programa B.

FECHA_TRABAJO: Fecha de trabajo en formato CHAR con el formato definido por
:global.nls_date format. Esta fecha se propone automaticamente en campos fecha que son
obligatorios y que el usuario intenta dejar en blanco.

DESDE_PUESTO: Contiene el valor de la variable LIBRA ID de libra6.ini con el que inicid
sesion el usuario. Si no se especifica esa variable el menu al entrar pone el ella el valor de los
primeros 30 caracteres del nombre del ordenador de Windows.

PERFIL: Perfil principal del usuario, el que tiene asociado en la ficha.

SUPERUSUARIO: Si el usuario tiene la marca de superusuario contendra el coédigo del usuario
validado, si el usuario validado no es superusuario contendra ‘EDISA’.

USUARIO: Codigo del usuario de Libra validado.

ROL_ACTIVO: Si el usuario tiene activada la seleccion manual de Rol al iniciar sesion, esta
variable contendra el codigo de ROL con el que se ha validado el usuario.

USUARIO_SO: Usuario del sistema operativo del equipo en el que se esta ejecutando Libra.
EQUIPO_SO: Nombre del equipo en el que se esta ejecutando Libra.
IMPRESORA_WINDOWS: Cuando entra en el ment se inicializa con el nombre de la impresora
predeterminada que tiene el usuario en su ordenador. El usuario la puede cambiar para esa sesion
de libra (es decir, mientras no salga de libra) por otra y se cambia el valor de esta variable.
PRUEBA_FALLOS: Contendra el valor S si libra se esta ejecutando en modo a prueba de fallos
y N en caso contrario. El modo a prueba de fallos consiste en que no se ejecutara ninguna
personalizacion de los programas, Unicamente lo estandar.

TRAZA: Contendra el valor SI en el caso de que se esté ejecutando en modo de traza y NO en
caso contrario. Hay algunos programas que si activas en el ment en modo traza generan un archivo
Jlog del proceso que realizan.

REG_FALLOS_TRADUCCION: Si tiene el valor S durante la traduccion de los campos a otros
idiomas distintos de castellano la traduccion no existe en etiquetas_erp traducidas se guarda el
fallo en etiquetas_erp fallo_traduccion.

SEP_DIR: Separador de directorios en servidor de aplicaciones.

SID_ESCRITORIO: Sid de Oracle con el que estd conectado el Ment.

IAS _CLIENTOSNAME: Contiene el nombre del sistema operativo del equipo cliente que
ejecuta Libra.

programas dindmicos hay también un campo muy Util para personalizaciones

:PLANTILLA.CODIGO PLANTILLA, contiene el cédigo de la plantilla que tiene seleccionada el

usuario.

145

@M EDISA

Pardmetros disponibles para personalizaciones

A partir de la versién 5.3.2 de Libra, los programas disponen de 10 parametros alfanuméricos
PARAMETER.PAxx (por ejemplo, PARAMETER.PAO1) y 5 numéricos PARAMETER.PNxxx (por
ejemplo, PARAMETER.PNO1) que pueden ser usados en cualquier personalizacion, tanto en coédigos pl/sql
como para el paso de valores a estos parametros en plug-ins.

Variables globales accesibles mediante pkpantallas

Estas variables estan accesibles tanto desde los programas, desde los procedimientos almacenados en la
base de datos, vistas, etc. Su utilidad es multiple, como hacer vistas parametrizadas por el usuario validado,
hacer sqls con autorizaciéon de permisos en el generador de informes, etc

Pkpantallas.usuario_validado: Devuelve el usuario que ha iniciado sesion, es decir, el
equivalente a la variable :global.usuario.

Pkpantallas.superusuario: Si el usuario validado es superusuario lo devuelve, si no es
superusuario devuelve EDISA, es el equivalente a la variable :global.superusuario.
Pkpantallas.perfil_usuario_validado: Devuelve el perfil principal del usuario validado, es el
equivalente a la variable :global.perfil.

Pkpantallas.programa_validado: Devuelve el nombre del programa que se esta ejecutando, es
equivalente a la variable :parameter.id_programa.

Pkpantallas.idioma_usuario_validado: Devuelve el idioma del usuario que esta validado, es
equivalente a la variable :global.idioma_usuario.

Pkpantallas.id_personalizacion: Devuelve el identificador de la personalizaciéon de
PROGRAMAS ERP PRES que se esta ejecutando. No hay equivalente en variable global.
Pkpantallas.get_valor_ultima_ejecucion_lov: Ver seccion codigo PL/SQL.
Pkpantallas.sector_empresa(<empresa>): Devuelve el sector de la empresa que se pasa por
parametro, es necesario pasar la empresa ya que se puede usar tanto en programas de nueva como
de vieja estética, internamente la consulta a la base de datos solo la hace la primera vez, luego ya
deja cargado el valor. No tiene equivalente en variable global.

Pkpantallas.get_usuario_so: Usuario del sistema operativo que esta ejecutando Libra.
Pkpantallas.get_equipo_so: Nombre del equipo que esta ejecutando Libra.

Definibles dindmicamente

Se pueden definir variables de forma dinamica, desde el fuente de un programa o desde codigo pl-sql del
mantenimiento de programas, para ello tenemos las siguientes funciones y procedimientos:

146

Pkpantallas.set_variable_env(<variable>, <valor>): Asignamos en la variable '<variable>' el
valor de '<valor>'. Ejemplo:
PKPANTALLAS.SET VARIABLE ENV(PRUEBA'/VALOR PARA PRUEBA");
Pkpantallas.get_variable_env_varchar2(<variable>): Devuelve el valor de la variable
'<variable>', siempre y cuando se le hubiese asignado un VARCHAR?2, si se le pas6 un DATE o
un NUMBER hara la conversion a VARCHAR?2. Ejemplo:
PKPANTALLAS.GET VARIABLE ENV_VARCHAR2('PRUEBA"), devolveria
'VALOR_PARA PRUEBA'ssi ejecutamos antes el ejemplo del punto anterior.
Pkpantallas.get_variable_env_number(<variable>): Devuelve el valor de la variable
'<variable>', siempre y cuando se le hubiese asignado un NUMBER.

Pkpantallas.get_variable env_date(<variable>): Devuelve el valor de la variable '<variable>"',
siempre y cuando se le hubiese asignado un DATE.

Pkpantallas.inicializar_variables_env: Borra todas las variables definidas.

@M EDISA

Variables de inicio de libra.env

147

FORMS PATH: Camino que usa libra para buscar los programas y las librerias. Se especificaran
los directorios separados por dos puntos ':'y se buscaran los programas comenzando por el primer
directorio especificado, sino se encuentran por el siguiente, ...

REPORTS PATH: Unicamente se utiliza para localizar los informes de Oracle Reports con
traducciones a otros idiomas. En el caso de no ser necesarios informes en idiomas esta variable no
es necesaria, ya que el propio servidor de Reports tiene las rutas a los informes de forma
independiente a Oracle Forms.

PATH: Camino en los que se buscan los ejecutables del sistema operativo para ejecuciones en el
servidor de aplicaciones.

NLS LANG: Idioma:

NLS DATE FORMAT: Formato de la fecha.

NLS NUMERIC _CHARACTERS: Si se especifica ,. se supone que, es el separador de decimales
y . el de millares.

NLS SORT: Tipo de ordenacion que aplicara Oracle, normalmente se especificard BINARY.
DIRECTORIO_SALIDA: Directorio que usan multiples programas de Libra para generar salidas
a archivos. Su uso estd considera obsoleto.

LIBRA_ID: Puesto desde el que se ejecuta Libra, debe de existir en la tabla de puestos para que
funcionen correctamente las listas de valores de impresoras.

IDIOMA_USUARIO: Idioma en que presentara la pantalla de login.

REG _FALLOS_TRADUCCION: Si se pone S se activa por defecto la opcion de menu de registrar
fallos de traduccion.

REP2EXCEL PARAM: Parametros con los que se llamara a rep2excel para convertir el archivo
html en xIs.

PROGRAMA_INICIO: Nombre del fmx que se ejecutara segun se valide el usuario, si el usuario
tiene especificado un programa de inicio prevalecera sobre el que se especifique en esta variable.
PROGRAMA FIN: Programa que se ejecutara al salir de Libra, si el usuario tiene especificado
un programa de fin prevalecera sobre el que se especifica en esta variable.
DIRECTORIO_SALIDA REP FILE: Directorio que se propondra por defecto cuando se
seleccione el envio de informes a fichero.

DIRECTORIO_SALIDA REP FAX: Directorio que se propondra por defecto cuando se
seleccione el envio de informes a fax.

DIRECTORIO_SALIDA REP_GESTDOC: Directorio que se propondra por defecto cuando se
seleccione el envio de informes a gestor documental.

DESACTIVAR RF: Si se asigna el valor S, no hace falta tener compilado ni que exista nada
relacionado con la radiofrecuencia para que funcione el ment.

COMANDO_REP2EXCEL: Indicar el comando completo para convertir un html en un xlIs, si no
se especifica nada se usa los valores por defectos de rep2excel. Del comando de sustituyen
<archivo_htmI> por el nombre del archivo con su ruta generado por el report, y <archivo_ xIs> lo
sustituira por la ruta y nombre del archivo XLS que debe generar. Ejemplo:
COMANDO_REP2EXCEL-=start http://your_server_name:7777/cgi-
bin/rep2excel.exe?baseidr=<archivo_html>

REP2EXCEL PARAM: Esta variable es incompatible con COMANDO_ REP2EXCEL, si se
especifican ~ ambas se wusaran Unicamente = COMANDO_REP2EXCEL, siendo
REP2EXCEL PARAM ignorada. En esta variable podremos afiadir parametros al comando
rep2excel.

REP2EXCEL _DESACTIVAR BORRADO: Para generar excel, rep2exel se basa en el archivo
html generado por reports, si a esta variable se asigna el valor S el archivo html no se borra una
vez hecha la llamada al rep2excel, ademas al archivo html y xIs se afiade el nombre del usuario y
la fecha para evitar que dos usuarios concurrentes generen el mismo archivo en un momento dado.

@M EDISA

e PAGESIZE EXCEL: Se puede usar para indicar a reports el tamafio de la padgina cuando se envia
a excel, es util para evitar el paginado en el informe, por ejemplo: PAGESIZE EXCEL=39 X
1300

e DIRECTORIO_LOG: Directorio en donde se guardaran los archivos de traza.

e COMANDO_FAX: Comando de sistema operativo que se ejecutara cuando el usuario selecciona
fax y reports ya ha generado el archivo se pueden usar las siguientes variables:

o <fax>: Se sustituye por el numero de fax al que se va a enviar el informe.

o <archivo pdf>: Nombre del archivo y ruta del fichero .pdf generado.

o <archivo_ps>: Nombre del archivo y ruta del fichero .ps generado.

e COMANDO_PS2PS2: Se usa cuando se especific6 el COMANDO_FAX, el comando que se
parametriza en esta variable se usa para convertir el archivo .pdf generado por forms a .ps
necesario en muchos programas de envio por fax. Se pueden usar las siguientes variables:

o <archivo pdf>: Nombre del archivo y ruta del fichero .pdf generado.

o <archivo ps>: Nombre del archivo y ruta del fichero .ps que se va a generar.

e CENTRAR LOV: Si se asigna el valor N las listas de valores no se centran en pantalla y se
muestran en la posicion 0,0.

¢ PROGRAMA DESTINO MENSAIJE: Cada vez que se muestre un mensaje, en vez de hacerlo
por el método estandar de forms se llama al programa que se indica en esta variable.

e TIPO PUESTO: Posibles valores:

o N: Normal, es el valor por defecto si no se especifica nada.

o T: Optimizado para el funcionamiento en terminal server con tamafio de ment normal.

o P: Optimizado para el funcionamiento en terminal server con tamafio de ventana
optimizado para pocket.

e DESACTIVAR CIERRE CON_ESC: Si se asigna el valor N se fuerza a que con la tecla ESC se
salga de Libra cuando se estd en el ment y no hay ningun programa abierto.

e VENTANA: Indica como se quiere que abra la ventana de Libra:

o MAX: Maximizada, este el el valor por defecto en caso de no indicar esta variable.

o MIN: Minimizada.

o NOR: Normal, en este caso se puede indicar el tamafio en pulgadas que se quiere que
tenga la ventana y la posicion X, Y en donde debe de abrirse, para ello hay que
especificar: VENTANA=NOR:X:Y:ANCHO:ALTO, por ejemplo:
VENTANA=NOR:0:0:8,3:5,4 (Se abrira Libra en la posicion X=0¢Y =0, ANCHO =
83y ALTO=54)

e EXTENSIONES VISUALIZACION: Lista de extensiones de archivo separadas por comas que
se pueden visualizar en el equipo en donde se esta ejecutando Libra. Si en parametros generales
de ment esta cubierto esta variable es ignorada.

e ACTIVA TRAZA: Si se indica el valor S, se activa la traza desde un principio, esto es
especialmente util para trazar la pantalla de Login.

Desarrollo de aplicaciones para pocket - Terminal Server

Configuracion del entorno.

El principal problema de la ejecucion en Terminal Server o Citrix en un dispositivo Pocket es el tamafio de
la pantalla fisica y que suele haber una pantalla 16gica mas grande y para recorrerla hay que usar las barras
de scroll, algo muy engorroso para los usuarios.

Al ser la pantalla l6gica mas grande que la fisica, todo lo que salga centrado posiblemente se vea en una
zona de la pantalla que no se estd visualizando en ese momento y para verlo el usuario tendra que hacer
scroll.

El objetivo que hay que plantearse, aparte de un menti mas pequefio, que todo salga en la posicion 0,0 de
la pantalla para que lo pueda visualizar bien el usuario. Para ello se debe modificar en el mantenimiento de
puestos desplegable “Tipo Puesto” e indicar “Pocket”.

148

@M EDISA

Desarrollo o adaptacion de un programa a pantalla pequefia.

El desarrollo hay que tener en cuenta los siguientes puntos:

149

Cambiar en las propiedades del formulario el “menu6” por “menu6_pocket” o uno adaptado a las
necesidades con las opciones que se quieran dar por menu a los usuarios.

Se ajustara el tamaiio de la ventana “VENTANA” y del lienzo “CANVAS BASE” al tamafio de
la pantalla de los pocket.

Anadir a los programas el grupo de objetos LISTA VALORES GRUPO y cuando se asigna en
el mantenimiento de programas la lista de valores en la pestaiia “Campo” en “Lista de valores por
grupos” seleccionar Si — 9 registros o Si — 5 registros dependiendo del tamafio de la pantalla. Se
pueden usar listas de valores normales, pero las de grupo son mucho més comodas para usar con
el lapiz del pocket.

En las listas de valores activamos las listas de valores por grupo. Seguramente se tengan que
personalizar las listas de valores para optimizar el tamafio de las columnas.

@M EDISA

Localizacion de descripciones de tablas de parametrizacion

De la traduccion de las pantallas al idioma del usuario se encarga totalmente el entorno de Libra, pero para
traducir tablas especificas de otros procesos simplemente proporciona ayuda para hacer dicha tarea.

Para ello se dispone del plug-in “u_plintdesidi” que se puede aplicar a cualquier programa para guardar las

traducciones por idioma.
Por ejemplo, para las formas de cobro / pago se afadiria el plug-in de la siguiente forma:

|

m LIBRA EDISA

Archivo Opciones Edicidn Desplazamiento Consulta Wentana Ayuda

M 4 ¥ b % 04 | @& Qs 0Bt ¥ = a e
M Programas (LIBRA 5.3.3 - MAQUINA VIRTUAL F11R3LIBRA)
Ea Programas Campa Bloque Avanzadas de Programa Plug-in Pestafias Ventanas PardmetrosPlugdin Informes Botonera Historia
LY | programa FORMASCP Mant. de Formas de Cobro/Pago
g Bloque B1 Datos de Formas de Cobro/Pago
Esperar a que termine el Programa Llamado Botonera Vertical
Permitir grabar en programa llamado Botonera Horizontal
‘ Menii Contextual Teda répida
Codigo Descripcién Programa Llamado | Icono Plantilla D oOrden |
L8 Descripdién por idioma u_plintdesidi v ® earth 1 a
-
Campo Control Activaddén B1.NOMERE Operacién IS NOT NULL > valor
Modo Meni Mo Reemplazar ~ Modo Consulta Mo Solo Consulta * Sistema de Autorizacién Desautorizacion -
Parametro Valor Parametro Cédigo Pljsgl Eiecutar en el registro actual =~
P_CODIGO B1.CODIGO ry -
P_CODIGO_EMPRESA [
P_NOMBRE_TABLA [FORMAS_COBRO_PAGQ'
-
Descripcion
MNombre de |a tabla de la que queremos hacer una traduccidn -
hd
¥|| | Ejecutar en vez del programa

Para introducir un valor constante debe de ponerse entre comillas simples, por ejemplo, 'S". Para pasar el valor de un campo se pondrd BLOQUE.CAMPO
Registro: 3/3

Particularidades de la configuracion del plug-in:

e Permitir grabar en programa llamado: Se desactiva esta check, ya que en el plug-in donde se
gestionan las traducciones el usuario no puede grabar, para grabar los datos introducidos lo hara
desde el programa llamador, en este caso, desde el mantenimiento de formas de cobro pago.

e Botonera Horizontal: Este plug-in se define en la botonera horizontal para tenerlo bien

diferenciado del resto de plug-ins.

e Icono: Ya propone “world”, es recomendable dejar este para que en todos los procesos tenga el

mismo icono.

e Modo Meni: Al ser un programa con una ventana flotante, para conseguir que una mejor

integracion con el programa llamador le indicamos “No Reemplazar”.
e Parametros:

[©]

150

P_CODIGO: Se indica el campo en el que se encuentra el codigo del registro del que se
quiere traducir la descripcion.

P_CODIGO_EMPRESA: En este caso al ser una tabla que los registros son comunes a
todas las empresas de Libra se le pasa "', en el caso de ser una tabla que la codificacion
fuese independiente de por empresa se pasaria GLOBAL.CODIGO EMPRESA

P NOMBRE_TABLA: Nombre de la tabla de la que se quiere gestionar las
traducciones, en este caso es FORMAS COBRO PAGO, por eso se pasa
'FORMAS_COBRO_PAGO.".

@M EDISA

El resultado sera el siguiente:

m LIBRA EDISA - cIEN
Archivo Opciones Edicién Desplazamiento Consulta Ventana Ayuda
M4 b M e EQE 7 @ LENCRE BN AR
M) Formas de cobra pago (LIBRA 5.3 3 - MAQUINA VIRTUAL F11R3LIBRA) 5]
Formas de Cobro/Paga
Forma Cobro/Pago EFECTIVO
Férmula de Calaio Forma de Pago EDI % Recargo Finandera
% Descuento Pronto Pago [0 Meses completos (30 dias) O Repercutir en Factura
Dias Margen Control Plazo [obviar Riesgo O obviar Periodos Vacacionales
Forma de Pago R.D. Facha Base \ormal - F. Factura
M Descripcidn por Idioma [x]
% Descuento Pronto Page Ca| o crincidn por Idioma Finandieros
% Descuento Fronto Pago C 1dioma Descripcién Idioma Descripcién Reducida
05 INGLES CAsH CAsH A
N Vencimiento Tipo Tran |
1EFE 0a
v
% Q|
-

Introduzea el Codigo de 1a Forma de Pago
Registro: 11

Para gestionar el borrado, de forma de que al borrar en la tabla padre borre las traducciones asociadas, hay
que meter en el PL/SQL de “Post Borrado” lo siguiente:

PKPANTALLAS.BORRAR_TRADUCCIONES TABLA('.',

:bl.codigo, 'FORMAS COBRO_PAGO');

El primer parametro recibe el codigo de la empresa, al ser una tabla que no se define por empresa se le pasa
"', en caso de ser una tabla que se definiese por empresa se pasaria :global.codigo_empresa;

Para recuperar la traduccion se llamara la funcion: PKPANTALLAS.BUSCAR TRADUCCION TABLA
('<empresa>', '<codigo>', '<tabla>', '<codigo de idioma>', '<descripcion sin traducir>', '<tipo');

e <empresa>: Si los registros de la tabla no van por empresa se pasard '.' (punto), en otro caso el
codigo de la empresa.
e <codigo>: Codigo del registro del que se busca la traduccion.
e <tabla>: Tabla donde esta almacenada la descripcion a traducir.
e <coddigo de idioma>: Codigo de idioma definido en la tabla IDIOMAS, en el que se quiere obtener
la descripcion en idioma.
e <descripcion sin traducir>: Texto de la descripcion sin traducir, se devolvera en el caso de que no
se encuentre una traduccion especifica para el idioma indicado en <codigo de idioma>.
e <tipo>:'R' para obtener la traduccion reducida y 'D' para la completa.
Ejemplo:
pkpantallas.buscar_traduccion_tabla('.', 'EFE', 'FORMAS COBRO_PAGO', '02', 'EFECTIVO', 'D')

151

@M EDISA

Consulta de datos jerarquicos

Mediante el programa U_ARBOL se pueden realizar consultas jerarquicas de tipo arbol. Por cada consulta
se debe de generar una nueva personalizacion del programa U _ARBOL.

El origen de los datos tiene que estar normalizado, para ello se puede usar una vista con una estructura fija:

CREATE OR REPLACE FORCE VIEW v_ . (empresa. codigo, descripcion. codigo_padre. ressrvadoall, d_reservadoall. reservadoalZ.
d _reservadoal2, reservadoall, d_reserwvadoall, reservadoald, d_reservadoald, reservadoalS,
d _reservadoalS, reservadoalf, d_reserwvadoalt, reservadoal?, d_reservadoal?, reservadoals,
d_reservadoal8, reservadoaly, d_reserwvadoall, reservadoall. d_reservadoall, reservadon0l.
d_reservadonll, ressrvadon02. d_reservadonl?. reservadon03. d_reservadon03. resesrvadon(4.
d_reservadonl4, ressrvadonlS, d_reserwvadonlb, reservadonl&. d_reservadonlf, reservadon(?,
d_reservadonl?, ressrvadonl8, d_reserwvadonlf. reservadonl?. d_reservadon0%. reservadonll.
d_reservadonll, icono. iconol2. reserwvado _check0l. reservado_check02, reservado_check03.
reservado _checkld, reservado check05, reservado check(f, reservado check07,
reservado_check0B, reservado checlk09, reservado checkll, reservado fechall,
reservado_fechal2) AS

Esa vista se indicar en el codigo pl/sql de inicializacion en la personalizacion a nivel de programa:

E Programas Personalizados Campo Blogue Avanzadas de Programa Plug-in Pestariz
Programa U_ARBOL Mantenimiento Visualizach
v Permitir Informes a Pantzlla v Permitir Informes a Archivo
v Permitir Informes a Impresara v Permitir Informes por eMail
Seleccion de Directorio en Informes Grabar automaticamente al salir
Cadigo FlfSgl de Inicalizacian il
:parameter. vista_origen 1= "v_arbol_maquinaria'; -~

Otra forma es modificar la consulta del bloque B2, en la personalizacion y meter ahi la SELECT
equivalente.

En la personalizacion se pueden afiadir hasta 10 filtros alfanuméricos, 10 filtros numéricos, 2 de fecha y
dos filtros codigos fijos (numérico o caracter segun si la tabla que estemos utilizando el codigo es numérico
o caricter).

Estos filtros se encuentran en el bloque B1 y por defecto estan ocultos, en la personalizacion se cambiara
la check “Ocultar”, la etiqueta y se afiadira si es necesario alguna lista de valores.

Los datos adicionales que se quieran visualizar, hay que personalizarlos en los campos del bloque B2,
cambiando la check “Ocultar” y la etiqueta.

En el bloque B2 se pueden afiadir plug-ins para ampliar la informaciéon mostrada, segun la rama del arbol
seleccionada.

El programa admite parametro el parametro codigoA (cddigo caracter) o codigoN (co6digo numérico) para
ser llamado como plugin y que salga el bloque del arbol directamente filtrado por el codigo.

152

@M EDISA

Graficos integrados en Programas

Esta funcionalidad s6lo funcionara cuando el programa se ejecute en Forms 12c.

En el programa que utilice esta funcionalidad hay que incluir la libreria: pklibgraf.pll, y en los bloques hay
que afiadir campos con la clase de propiedad CLASE _GRAFICO

Para representar el grafico es necesario partir de una SQL que obtenga los datos a mostrar. La sql debera
de devolver los registros 1o mas agrupados posibles, es decir, si queremos las ventas por clientes, sera:
SELECT cliente, SUM(importe) importe FROM tabla GROUP BY cliente. En vez de SELECT cliente,
importe FROM tabla.

Inicializar Grdfico.

El primer paso para utilizar un campo de grafico es inicializarlo. Esta inicializacion se hara llamando a la
funcion: pkgraficos.inicializar(BLOQUE.CAMPO_GRAFICO"). Esta funcién devolverd un identificador
numérico que debera ser almacenado en una variable, ya que ese valor identificara el grafico para poder
aplicarle propiedades. Ejemplo: :parameter.id_grafico := pkgraficos.inicializar('B1.GRAFICQO");

Propiedades a nivel Grdfico.

Para modificar propiedades a nivel de grafico se utilizarda el procedimiento
pkgraficos.set propiedad(<id_grafico>, <propiedad>, <valor>).

e <id_grafico>: Identificador del grafico obtenido por pkgraficos.inicializar.
e <propiedad>: Cddigo de la propiedad a modificar del grafico.

e DEVOLVER _VALOR_SELECCIONADO: Cuando el usuario hace click sobre algiin
elemento del grafico, podemos indicar que es lo que queremos que nos devuelva (Valores
posibles para <valor>):

o 'ALL" Todo

o 'ROWLABEL" Etiqueta de fila.

o 'COLUMNLABEL'" Etiqueta de columna.
o 'CELLVALUE'": Valor representado.

o 'PRIMARY_KEY" Coddigo asignado.

REGISTRAR _TRIGGER: Cuando interesa recoger el valor seleccionado por el usuario hay que registrar
un TRIGGER que debera existir en el programa (trigger de usuario), cuando el usuario pulsa sobre algun
componente del grafico se disparara ese trigger, en el cual se debera recoger el valor con la funcion
pkgraficos.get valor _devuelto(). En <valor> de la propiedad se indicara el nombre del trigger. El valor
devuelve depende de lo que se indique en DEVOLVER _VALOR_SELECCIONADO. Si no se ha indicado
la propiedad DEVOLVER_VALOR_SELECCIONADO el registro del trigger serd ignorado. También hay
que afadir en el programa en el disparador WHEN-CUSTOM-ITEM-EVENT la siguiente linea:
PKGRAFICOS.WHEN_ CUSTOM _ITEM_EVENT;

e TIPO_GRAFICO: Tipo de grafico a representar, en <valor> se puede indicar uno de los

siguientes tipOS: HORIZONTAL BAR, HORIZONTAL BAR 2Y, VERTICAL BAR, VERTICAL BAR 2Y,
VERTICAL STACKED BAR, HORIZONTAL STACKED BAR, VERTICAL PERCENT BAR, HORIZONTAL PERCENT BAR,
VERTICAL_LINE_GRAPH, HORIZONTAL_LINE_GRAPH, RING_BAR, VERTICAL_STACKED_LINE_GRAPH,
HORIZONTAL STACKED LINE GRAPH, VERTICAL AREA GRAPH, VERTICAL PERCENT AREA GRAPH,
VERTICAL STACKED AREA GRAPH, PIE GRAPH, PIE BAR GRAPH, MULTI PIE GRAPH' COMBINATION GRAPH,
3D_BAR_GRAPH, 3D_AREA_GRAPH

e TEXTO_TITULO: Titulo que se mostrara en la cabecera del grafico. En <valor> se indicara
el texto.

e TOOLTIPS: Se indicara el comportamiento deseado cuando el usuario pase con el raton
sobre alguna parte del grafico. En <valor> se pueden indicar los siguientes valores:
o 'NONE" No se muestra nada.
o 'ALL": Mostrara toda la informacion disponible.
o 'LABELS'" Muestra las etiquetas de la columna.
o 'VALUES'" Se muestra el valor del dato representado.

153

@M EDISA

e SHOW_GRID: Permite activar o desactivar la rejilla de fondo del grafico. Valores posibles:
TRUE, FALSE

e MOSTRAR_COLUMNAS_EN_FILAS: Permite permutar las filas por columnas. Valores
posibles: TRUE, FALSE

e TRAZA: Activa la salida de informacion de traza para el grafico. Valores posibles: TRUE,
FALSE

Afadir SQL a Grdficos

Un gréfico por lo general contendra una tinica SQL. La SQL seré la que determine los valores a representar
y debe tener las siguientes caracteristicas:

e Tantos campos numéricos como valores a representar en el grafico.
e Un campo para obtener el valor del titulo de la serie a representar.

Para afiadir una SQL al grafico se utilizara la funcion: pkgraficos.add sql(<id grafico>, <sql>'); Esta
funcién devolvera un identificador numérico que sera necesario guardar en una variable para luego asignar
propiedades a la SQL.

Propiedades de SQL.

Para modificar propiedades a nivel de SQL se utilizara el procedimiento
pkgraficos.set_propiedad sql(<id_grafico>, <id_sql>, <propiedad>, <valor>).

e <id_grafico>: Identificador del grafico obtenido al ser inicializado por pkgraficos.inicializar.
e <id_sql>: Identificador de la sql, obtenido en pkgraficos.add sql.
e <propiedad>: Cddigo de la propiedad a modificar de la sql.

o COLUMNA_TITULO: Identifica la columna que contendra el titulo de las series a
representar. En <valor> se indicaré el nimero de columna de la SQL que contiene este
dato.

o COLUMNA_PRIMARY_KEY: Esta propiedad es opcional, y se utiliza cuando se
registra un trigger en el grafico y se indica que se debe de devolver la clave primaria del
valor seleccionado por el usuario. En <valor> se indicara el nimero de columna de la
SQL que contiene la clave primaria.

o MASCARA_FORMATO_COLUMNA_TITULO: Si en COLUMNA TITULO se
indic6 una columna de tipo DATE, se puede modificar la mascara de formato. En <valor>
se indicara una mascara de formato valida.

Mostrar el grdfico

Una vez asignadas las propiedades necesarias para representar el grafico, hay que invocar al procedimiento:
pkgraficos.mostrar_grafico(<id_grafico>);

154

LATINOAMERICA | ESPANA
COLOMBIA | MADRID

ECUADOR | BARCELONA

MEXICO | VALENCIA
REP. DOMINICANA | VIGO

OVIEDO

LAS PALMAS

OURENSE (CENTRO 1+D)

006 O)

